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Abstract 
Daylighting plays a crucial role in building science, impacting both occupants’ well-being and energy consumption in buildings. 
Balancing the size of openings with energy efficiency has long been a challenge. To address this, various daylight metrics have been 
developed to assess interior spaces’ daylight quality. Additionally, architects have been using simulation algorithms to predict 
postconstruction light conditions. In recent years, machine learning (ML) has revolutionized daylight simulations, offering a way to 
predict daylight conditions without cumbersome 3D modeling or heavy computational resources. However, accommodating architects’ 
creativity remains a challenge for current machine learning-based models. Specifically, the diversity of window shapes and their 
locations on facades poses difficulties for prediction accuracy. To overcome this limitation, this paper proposes a novel method that 
transforms wall information into matrices and uses them as input to train an artificial neural network-based model; this model can well 
predict the annual daylight simulation result generated by the Climate-Based Daylight Modeling tools. This method allows the model 
to adapt to various real-world design scenarios in real time, and its robust reliability has been demonstrated through evaluations of 
prediction accuracy concerning different annual daylight metrics. This approach caters to specific cases and opens possibilities for 
application in other machine learning and deep learning-based methods. 

© 2023 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction
In the United States, NHAPS research participants spent an 
average of 87 percent of their time in enclosed buildings during 
the 2-year research survey, and this ratio remained largely 
consistent across the country’s major regions [1]. As a result, 
ensuring a healthy environment for occupants within enclosed 
buildings becomes a crucial responsibility for both architects and 
building scientists. Among the various factors contributing to a 
healthy environment, daylight quality holds particular 
significance. Access to natural light not only facilitates occupants’ 
daily activities such as reading or household chores but also 
provides psychological benefits by offering views of nature and 
exposure to daylight [2]. Balancing daylight availability is also 

essential for energy efficiency, as it reduces the need for electric 
lighting. However, excessive daylight can lead to increased 
cooling loads during summers and cause discomfort due to glare 
and beam sunlight, impacting the overall lighting quality within 
the building environment. 

Consequently, achieving an appropriately lit environment 
becomes one of the primary goals for architects from the initial 
stages of the design process. To accomplish this, daylight 
simulation methods have been developed over the past decades to 
predict and simulate the daylight environment for different design 
proposals [3]. Additionally, various metrics have been devised to 
quantify the quality of the lighting environment in the building 
industry. Emphasizing the importance of sustainable building 
practices, several industrial standards and certifications, such as 
Leadership in Energy and Environmental Design (LEED) and 
Building Research Establishment Environmental Assessment 
Method (BREEAM), have been established to promote enhanced 
building environments with improved thermal and visual comfort 
while reducing energy consumption and carbon footprint during 
construction and operation phases. 
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Daylight simulation methods can be broadly categorized into 
three primary computation approaches: static, dynamic, and 
climate-based daylight modeling [3]. The static approach 
primarily relies on the daylight factor (DF) [4], which is calculated 
by dividing the inside illuminance (Ei) at a specific working plane 
by the outdoor illuminance (Eo) from the overcast sky. However, 
this method lacks consideration for crucial parameters like 
direction and sun angles, leading to unreliable results. The core of 
the dynamic method is daylight coefficients (DC) [5]. This method 
has higher accuracy than DF, while limiting the number of 
calculations required because it doesn’t need to use ray-tracing 
techniques. Climate-based daylight modeling (CBDM) has the 
remarkable capability to predict a wide range of radiant and 
luminous factors, including irradiance, illuminance, radiance, and 
luminance. These predictions are made possible by harnessing sun 
and sky data from meteorological datasets. The method can 
accurately predict daylight conditions for specific areas at hourly 
or smaller intervals [6], making it the market leader in prediction 
accuracy. To conduct a CBDM simulation, it is essential to first 
obtain detailed weather files. It then involves constructing a 3D 
model representing the physical layout and geometry of both 
indoor and outdoor spaces of the target building. Then, a grid of 
sensors is set up to collect luminous data, adding another crucial 
step to the process [3]. The precision and reliability of daylight 
predictions within the specified areas heavily depend on the 
accuracy and level of detail in these models. The comprehensive 
approach demands substantial computational resources and time 
due to the complexity of the calculations involved. 

As technological advancements in machine learning, deep 
learning, and artificial intelligence continue, traditional 
engineering methods of daylight simulation face new challenges. 
While machine learning can drastically reduce computation time 
[7], it cannot fully replace the comprehensiveness of CBDM yet. 
Machine learning models in previous studies have limitations in 
describing window geometrical features. For example, in the study 
that was conducted by Nourkojouri and his team, the machine 
learning model only takes sill height, window height, and window 

width into consideration [8]. As shown in Fig. 1, the window type 
input only includes two options, one is a single window that sits 
on the center of the wall, and only its height, width, and sill height 
can be adjusted; the other situation is 2 to 3 identical windows 
spread evenly on the facade, and again, only the windows’ height, 
width, and sill height can be adjusted. The nature of the limited 
inputs restricts the variations of the number of windows, window 
shapes, and their relative locations on the wall. Furthermore, most 
models only consider openings on a single facade, excluding 
complex scenarios like corner rooms, as Fig. 2 demonstrates. 

The fact that the previous models are not able to make 
predictions for these diverse openings heavily limits their 
adaptability, and these models do not provide a user-friendly 
experience to the architects who want to use this them to verify 
their designs, thereby undermining the practicality of such 
prediction models. The primary reason behind the restriction in 
existing research lies in the limitations of the tools used to create 
daylight simulation models. These tools can only generate simple 
variations within a narrow set of inputs. This study seeks to 
overcome these constraints and develop an improved model that 
can be applied to a wider range of scenarios. 
 
2. Methodology 
2.1. Research objective and workflow 
The primary objective of this study is to design a neural network-
based model capable of accurately predicting the annual daylight 
simulation results generated by the CBDM method for a target 
space. This neural network model is designed to effectively handle 
various challenging scenarios, including scenarios with single 
windows positioned off-center on the wall or multiple windows 
unevenly distributed on the wall, windows on the walls with 
varying dimensions, encompassing differences in heights, widths 
and sill heights, and situations where more than one wall contains 
windows, such as corner rooms and balconies. 

 
Fig. 1. Limited window shapes and locations on the wall. 
 

 
Fig. 2. Room with openings on two walls. 
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The method development involves constructing a robust neural 
network-based model, and the entire workflow is visually 
represented in Fig. 3. The process consists of four essential parts: 
data generation, data processing, model training, and model 
validation. To achieve this, several tools and languages were 
employed, including (1) Rhino and Grasshopper, 3D-modeling 
platforms, (2) Honeybee-Radiance, a daylight simulation tool, (3) 
Python as the programming language, and (4) Scikit-Learn, a 
machine learning library that can implement a basic Artificial 
Neural Network (ANN) Model in Python. 

The core of this research lies in the data processing component, 
where the complex window shapes are converted into a series of 
matrices, which are then compiled into a set of features used for 
model training; this process is depicted in Fig. 4. Essentially, the 
method transforms the window information into a collection of 2D 
images, which are subsequently utilized as input features for 
training the neural network model. 

 
2.2. Encoding method 
The matrix-based encoding approach illustrated in Fig. 4 offers 
significant advantages in enhancing the model’s adaptability to 
real-world scenarios. By encoding information about window 
openings on each wall into matrices, including the shapes of the 
windows and their relative positions, the model gains a more 
comprehensive understanding of the spatial arrangement. 

The flexibility of this method is further highlighted by the 
matrix’s ability to expand with enough rows and columns. As long 
as the matrix has adequate dimensions, it can effectively handle 
any 2D shapes and varying numbers of windows, regardless of 
their complexity or arrangement. This adaptability makes the 
model well-suited for a diverse range of architectural designs, 
reflecting real-world conditions with varying window 
configurations. 

Overall, this matrix-based encoding approach significantly 
enhances the model’s capability to predict daylight simulation 
results accurately for different building facades, providing 
practical and reliable insights for architects and designers in real-
world applications. 

 
2.3. Artificial neural networks 
As mentioned earlier, the ANN model was employed in this study 
for daylight predictions. Artificial Neural Networks (ANNs) are 
computational models inspired by the structure and functionality 
of the human brain’s neural networks [9]. These networks consist 
of interconnected nodes, called artificial neurons or perceptrons, 
arranged in layers [9]. Information flows through these 
interconnected neurons, and each connection has an associated 
weight that modulates the signal [9]. ANNs are designed to learn 
from data, adapt to patterns, and make predictions or decisions 
based on the learned information [9]. The learning process 
involves adjusting the weights of the connections through various 
training algorithms, allowing the network to generalize and 
perform tasks beyond the training data [10]. ANNs have been 
applied in many different fields, such as computer vision, natural 
language processing, and finance, because of their capability to 
solve complex issues [11]. 
 
3. Research process 
3.1. Data generation 
3.1.1. Space generation 
The ANN model heavily relies on having a sufficient amount of 
training data. To ensure coverage of all possible situations of 
window openings, a parametric model was developed using Rhino 
and Grasshopper. Rhino is a 3D modeling platform specifically 
used for space generation [12]. 

 
Fig. 3. Overall research workflow. 
 

 
Fig. 4. Encoding openings into matrices for modeling training. 
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In this research project, a total of 5000 samples were generated. 
All the samples utilized a 30 by 30 by 10.5 ft box as the basis for 
simulating the testing space for daylight simulation, as illustrated 
in Table 1. 

 
3.1.2. Randomized openings 
Grasshopper, a visual-based programming interface that operates 
within the Rhino environment [13], was utilized for this research. 
It enabled the creation of parametric models capable of generating 
an extensive range of variations by adjusting the inputs. 
Specifically, Grasshopper was employed to generate randomized 
window configurations on the walls of each of the 5000 samples, 
as depicted in Table 1. Each data sample in the dataset was 
designed to represent a 30 by 30 by 10.5 ft box, simulating the 
testing space for daylight simulation. For added versatility, the 
number of randomized openings on each wall varied from 0 to 5, 
covering a broad range of scenarios commonly encountered in 
office and home setups. Furthermore, key window parameters, 
such as window height, window width, sill height, and the number 
of windows on each wall, were also subjected to randomization 
for every data sample generated by Grasshopper. This extensive 
variation in the dataset enables the neural network model to better 
generalize and accurately predict daylight simulation results 
across diverse window configurations. 

To make the randomized openings on each of the walls, as the 
Fig. 5 demonstrates, (1) the walls of the room were into 4 
individual surfaces, where each of the surfaces has the same size, 
which is 30 ft by 10.5 ft, (2) an evenly spread, 19 by 6, point grid, 
which has 19 columns, index 0 to 18, and 6 rows, index 0 to 5 was 
generated on each of the surfaces, (3) a list of 10 non-repeating 
random integers was generated in Python, that range between 0 
and 18, and then sorted in ascending order, for example, as shown 

in Fig. 5, the integers are: (1, 2, 4, 7, 8, 10, 11, 12, 15, 16), (4) the 
columns of points were kept based on the list of numbers that was 
generated in step 3, such as column 1, column 2, column 4, etc., 
and the remaining columns of points were discarded, (5) a set of 
random integers was generated in Python, that range between 0 
and 5, in the case shown in Fig. 5 step 5, the integers are: (5, 4, 4, 
3, 4, 1, 2, 2, 1, 5), (6) the list of numbers that was generated in step 
5 was used to call out the points in the columns that were selected 
in step 4 accordingly, and (7) those 10 points were divided into 5 
adjacent groups based on the column indices, where each group 
contained 2 points, and then rectangles were made based on those 
points. 

Since the algorithm that was used to determine the width of the 
randomized openings was set to generate 10 non-repeating random 
integers, theoretically, the single opening that has the maximum 
width will be generated when the random list made in step 3 is (0, 
1, 2, 3, 4, 5, 6, 7, 8, 18) or (0, 10, 11, 12, 13, 14, 15, 16, 17, 18), 
which makes the maximum width of the window 15 ft. 
Meanwhile, maximum window height occurs when the random 
number group that was generated in step 7 has both 0 and 5 in it, 
which makes the maximum height of the window 7.5 ft. Therefore, 
the largest single opening possible that can be generated by this 
algorithm is 15 ft by 7.5 ft, which is 112.5 ft2, while the wall is 
315 ft2, so the highest single window-to-wall ratio is 0.357. Notice 
that this is not the largest window-to-wall ratio possible that the 
algorithm can generate, when the 112.5 ft2 opening appears, the 
other 4 windows can also achieve their maximum size, which is 
1.5 ft by 7.5 ft, which makes it 11.25 ft2, so in that case, the largest 
openings on one wall is 112.5 ft2 + 11.25 ft2 * 4 = 157.5 ft2, which 
makes the window-to-wall ratio 0.5. And of course, by changing 
the density of the point grid and the default number of openings, 
this window-to-wall ratio can be increased dramatically. 

Table 1. Key parameters of the dataset. 
Key Parameters Values 

Room Width 30’ 
Room Depth 30’ 
Ceiling Height 10.5’ 
Window Width [1.5’, 15’] 
Window Height [1.5’, 7.5’] 
Sill Height [1.5’, 7.5’] 
Number of Walls with Openings [1, 4] 
Number of Windows on Each Wall [0, 5] 

 

 
Fig. 5. Workflow of generating the randomized openings. 
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Notice that in the example shown in Fig. 5, step 7, because one 
of the adjacent group of points has the same height, no rectangle 
was generated, so there are only 4 openings in this example. 
Therefore, based on the randomly selected points, the number of 
openings can vary from 0 to 5. Another thing to point out is that 
due to the limitations of this method, none of the openings can 
overlap with the others in the vertical direction. 
 
3.1.3. Daylight simulation 
Other than requiring detailed 3D models, which have been 
discussed in the previous paragraphs, performing CBDM 
simulations also requires detailed weather files as input, where 
each file corresponds to a specific location. For this project, 
Raleigh, North Carolina, was chosen as the location, and all the 
data files record the corresponding data from the Raleigh area. The 
weather data used for the simulations were from Ladybug’s 
epwmap database. Ladybug provides the capability to visualize 
and analyze weather data directly within Grasshopper; it offers a 
diverse range of visualization tools like sun path diagrams, wind 
roses, and psychrometric charts to better understand weather 
conditions at a particular location [14]. Additionally, Ladybug 
enables geometry studies, such as radiation analysis, shadow 
studies, and view analysis, which aid in optimizing building 
performance and energy efficiency based on weather patterns and 

solar positions, and all of these features are conveniently 
integrated into the Grasshopper environment [14]. Epwmap is a 
component developed as a part of Ladybug Tools, and its primary 
objective is to offer a unified interface for accessing all the freely 
available .epw weather files. By providing this centralized 
interface, epwmap simplifies the process of accessing and utilizing 
weather data from various sources within Ladybug Tools for 
climate analysis and simulations [15]. 

The simulation results generated by the CBDM methods were 
computed using Radiance, where Honeybee was used as the 
control mechanism within the Rhino-Grasshopper environment. 
Radiance is an engine developed by the Lawrence Berkeley 
National Laboratory in collaboration with the PG&E Pacific 
Energy Center [16]. It is used for energy-efficient lighting and 
daylighting strategies in building design, and it allows architects 
and designers to easily consider and implement energy-efficient 
lighting and daylighting strategies by providing access to libraries 
of materials, glazing, luminaires, and furniture [16]. Honeybee 
was developed as part of Ladybug Tools; in this project, Honeybee 
served as a Grasshopper plug-in designed to facilitate the creation, 
execution, and visualization of daylight simulations, and again, the 
computation core of Honeybee is Radiance [17]. 

Besides the 3D model and weather file, another important 
component for CBDM simulations is setting up the sensor grid. 

 
Fig. 6. Transforming information of the openings into matrices. 
 

 
Fig. 7. Input variables (X) that mark the openings on 4 walls. 
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While sensor grid spacing does not heavily affect the accuracy of 
the CBDM simulation results [18], in order to reduce the amount 
of computation required, the spacing of the sensors was set up as 
3 ft. Thus, for the 30 ft by 30 ft space, a 10 by 10 sensor grid was 
generated. 

After all the preparations, the simulations were executed, and 
all the results were collected and embedded in CSV files. 
Examples can be seen in the data processing section. 
 
3.1.4. Daylight metrics 
Three daylight metrics were used in this research, including 
Daylight Autonomy (DA), Continuous Daylight Autonomy 
(cDA), and Useful Daylight Illuminance (UDI). 

DA constitutes a daylight metric that determines sufficient 
daylight for productive occupancy without artificial lighting by 
considering work plane illuminance [19]. Designers and architects 
can refer to established guidelines in reference documents to 
ascertain the minimum illuminance levels required for different 
space types [19]. 

Proposed in 2006, cDA differs from earlier interpretations of 
daylight autonomy, cDA assigns fractional value to time intervals 
when daylight illuminance falls below the specified minimum 
level [19]. For instance, if a situation necessitates 800 lx and 
natural light provides 500 lx during a specific interval, a partial 
credit of 0.625 is accorded for that interval; consequently, instead 

of employing a strict threshold, this method introduces a more 
gradual transition between compliance and noncompliance [19]. 

UDI is a metric for evaluating indoor daylight quality. It 
replaces fixed threshold illuminance values with a range of 
illuminance levels considered beneficial [20]. Daylight levels 
below 100 lx are inadequate, 100–500 lx is effective, 500–2000 lx 
is desirable/tolerable, and above 2000 lx can cause discomfort; 
UDI considers illuminances within 100–2000 lx as useful, 
accommodating occupants’ visual needs [20]. This dynamic 
metric captures varying illuminance levels and preferences, 
offering a comprehensive assessment of indoor daylight quality; 
it’s applicable to diverse spaces and design variations, providing 
insight into occupants’ comfort and productivity [20]. In this 
research, daylight levels below 100 lx were marked as Useful 
Daylight Illuminance Low (UDI Low), and daylight levels above 
2000 lx were marked as Useful Daylight Illuminance Up (UDI 
Up). 
 
3.2. Data processing 
3.2.1. Openings encoding 
In this research, openings on the walls were encoded into matrices 
(Fig. 5, step 8). Data points within the openings and edges were 
set to 1, while the rest were set to 0. As Fig. 6 indicates, the four 
walls on the left were transformed into the matrices on the right, 

 
Fig. 8. Target variables (Y) that mark the DA simulation result of the 10 by 10 sensor grid. 
 

 
Fig. 9. Process of training the ANN model. 
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and the matrices were used as input variables for the ANN model. 
This matrix-based representation effectively captured information 
of the openings, enabling accurate predictions. 

 
3.2.2. Features and targets 
Figure 7 displays the input variables (X) for the ANN model, 
representing the openings on the walls. The dataset comprises 
5000 rows and 456 columns. 5000 is the number of the data 
samples within the dataset. Each wall is depicted using a 19x6 
point grid, resulting in 114 binary (0/1) data points per wall. As 
there are 4 walls, the total input features amount to 456. 

Figure 8 illustrates the target variables (Y) for the ANN model, 
representing the daylight autonomy (DA) results recorded by a 
10x10 sensor grid. This dataset consists of 5000 rows and 100 
columns, describing the targets for DA. 

It is worth noting that this research compared the ANN model’s 
performance across different metrics, including DA, cDA, and 
UDI. Although Fig. 8 demonstrates only the simulation result for 
DA, the other daylight metrics’ simulation results were also 
included in the same data structure. 

 
3.3. Model training 
3.3.1. ANN architecture and parameters tuning 
The process of training and testing the ANN model is iterative. It 
involves tuning the hyperparameters and optimizing the model 
architecture to achieve better performance on the test set while 
avoiding overfitting on the training data. In this tuning process, the 
goals are to tune the model so that it can generalize well to new 
data and make accurate predictions on different daylight metrics, 
and to find a reasonable size of the training set for the ANN model 
while maintaining a high accuracy. 

Training the ANN model for this research took 8 steps. The first 
step is data preprocessing, where the data was prepared, which has 
been presented in the previous section; in some of the cases, no 
window was generated on any of the 4 walls, and those cases were 
removed. The second step is splitting the data, where the dataset 
was divided into a training set and a test set. The training set was 
used to train the ANN model, while the test set was used to 
evaluate the ANN model’s performance on unseen data; in this 
project, the train/test ratio was set as 10 to 1. As the size of the 
training set varies, the size of the testing set changes accordingly. 
The third step is model initialization; in this step, the ANN model 
from scikit-learn [21] was chosen to be trained, and to make the 
predictions. The fourth step is model compilation, where the 
default optimizer from scikit-learn was used to determined how 
the model is updated based on the calculated gradients; the square 
error was chosen as the loss function and the R-squared value was 
used as evaluation metric which provides a performance measure 
during training. The fifth step was mode training, where the 
training data, which can be seen in Figs. 7 and 8, was fed into the 
ANN model; the data helps the model learn the relationships 
between the input variables (X) and the target variables (Y). The 
sixth step is performance evaluation; after training, the model was 
evaluated using the test set to assess its accuracy and 
generalization capability on unseen data. The seventh step is 
hyperparameter tuning, where the hyperparameters of the model 
were adjusted to improve the model’s performance; as Fig. 9 
demonstrates, the learning rate was set to 0.005, the number of 
layers was set to 3, and the number of neurons was set to 300 for 
each layer. The eighth and final step is prediction on unseen data; 
after the ANN model was trained and tuned, it was used to make 
predictions on completely new and unseen data, which can be seen 
in the following section. 
 

 
Fig. 10. ANN prediction accuracy among different daylight metrics. 
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4. Results 
4.1. Accuracy and efficiency 
To evaluate and compare the performance of the ANN model 
across distinct daylight metrics and varying dataset sizes, Fig. 10 
was generated to visually represent the outcomes. The ANN model 
was applied to predict diverse categories of daylight metrics, 
encompassing DA, cDA, and UDI. Figure 10 distinctly illustrates 
that both DA and cDA exhibit high accuracy levels, with cDA 
displaying particularly high performance; when the dataset size 
approximates 1700 samples, the cDA predictions achieve a 
notably high R-squared value of 0.95, highlighting the model’s 
exceptional predictive abilities. Although the R-squared value for 
UDI is not as high, the model still manages to reach an R-squared 
value of 0.9 when the dataset size is around 4000 samples. 

However, the ANN model’s performance varies among 
different ranges of illuminance; as shown in Fig. 10, when 
predicting Useful Daylight Illuminance Low, where the sensors 
get lower than 100 lx illuminance, the R-squared value of the 
prediction accuracy reaches 0.9 with only 1700 samples; on the 
other hand, when making predictions of Useful Daylight 
Illuminance Up, where the sensors get higher than 2000 lx 
illuminance, the R-squared value of the prediction accuracy just 
reaches 0.77 when the number of the samples is 1700. In order to 
increase the R-squared value to 0.9, 3500 cases are needed, which 
is more than doubled the number of samples needed to achieve 
such accuracy in the Useful Daylight Illuminance Low prediction. 

As depicted in Fig. 11, in order to demonstrate the model’s 
precision visually, an external sample was introduced to the ANN 
model. On the left, the DA result was generated by the CBDM 
method, whereas the DA result on the right was predicted by the 
ANN model. While noticeable discrepancies between the CBDM-
generated data and the ANN model’s predictions exist for specific 
data points, the overall trends remain the same. Evidently, the 
ANN model has effectively captured the correlations between 
window configurations, their relative positions on walls, and 
ensuing DA outcomes. 

In the computer that was used to perform this research, which is 
equipped with an Intel i7-9700 CPU, it takes Honeybee and 
Radiance more than 15 seconds on average to run a simulation 
with one result. This difference is striking when comparing this to 

the performance speed for the ANN model. As Fig. 9 indicates, 
with the same hardware, the ANN model can train the model using 
4500 samples in less than 13 seconds. In addition, making the 
prediction depicted in Fig. 11 takes even less time, under 1/1000 
seconds. This speed is impressive, especially considering that the 
accuracy remains high. 
 
5. Discussion 
As the results show, the method introduced in this research shows 
great accuracy and efficiency when making predictions for annual 
daylight simulation results over different types of daylight metrics. 
With only 2000 samples, the R-squared value of the prediction 
accuracy reached 0.95 in Continuous Daylight Autonomy, 0.93 in 
Daylight Autonomy, and 0.86 in Useful Daylight Autonomy. It is 
worth noting that many of the samples in the test set have windows 
on more than one wall; meanwhile, all those windows that 
populate the walls have variations over height, width, sill height, 
and their relative locations on the walls, which none of the 
previous machine learning-based models are capable of making 
daylight predictions for. Furthermore, the ANN model 
demonstrates great efficiency in making predictions; with the 
same hardware that was used for conducting this research, 
performing one CBDM simulation with Honeybee and Radiance 
takes more than 15 seconds on average; however, it only takes the 
ANN model 13 seconds to train 4500 samples, where making each 
prediction takes less than 1/1000 seconds. 

However, when considering making predictions over different 
ranges of Useful Daylight Illuminance, the prediction accuracy 
over the high range, which is higher than 2000 lx, was not as robust 
as the prediction accuracy over the low range, which is lower than 
100 lx. The reason behind this performance difference may be 
related to the feature of the samples within the dataset. Although 
most of the rooms within the dataset had at least one window and 
many of them have multiple, as mentioned, the highest single 
window-to-wall ratio is 0.357, so the likelihood that the sensors 
record an illuminance higher than 2000 lx is very low; therefore, 
the ANN model didn’t get enough training data to understand the 
relationship between the window configurations and the 
distribution of Useful Daylight Illuminance above 2000 lx, which 
resulted in its poor performance when making predictions over the 

 
Fig. 11. CBDM result vs ANN model prediction. 
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high range. To the contrary, many of the samples within the dataset 
had a low window-to-wall ratio, which contributed to a lower 
amount of daylight penetrating into the space; this resulted in 
many of those sensors within the sensor grid recording an 
illuminance lower than 100 lx, which falls into the lower range of 
the Useful Daylight Illuminance, so these data points were more 
common in the dataset, and therefore the ANN model was able to 
better make these predictions. Therefore, to guarantee better 
performance of the ANN model when making predictions over 
Useful Daylight Illuminance Up, more samples with higher 
window-to-wall ratios can be employed in the future datasets. 

The introduction of machine learning, deep learning, and other 
artificial intelligence-based models into the field of daylight 
simulation has been a popular research topic; however, utilizing 
matrices derived from geometric data to train ANN models is a 
significant leap forward in addressing the challenge of daylight 
simulation brought by the variations of window configurations.  
One notable strength of this methodology lies in its adaptability; 
the method proposed in this research study can be applied to other 
fields of building science, such as energy consumption simulation 
and thermal comfort prediction.  

Even though many promising artificial intelligence applications 
have emerged, perceiving, analyzing, and generating 3D-spaces 
remains challenging; by encoding 3D information into 2D 
matrices, this study shows that the ANN model has the ability to 
gain comprehensive understanding of spatial arrangements, and 
demonstrates its ability to make accurate predictions over annual 
daylight simulation results. The dimension-reducing method that 
was introduced in this research has the potential to be applied in 
other artificial intelligence methods, which can help future models 
gain better understanding of the 3D environment and make great 
applications. 
 
6. Conclusion 
This study introduces an innovative approach utilizing ANN 
models to predict CBDM simulation outcomes, incorporating 
more versatile window configurations. The effectiveness and 
dependability of this approach are evident in the ANN model’s 
prediction accuracy across various daylight metrics. Geometric 
data was translated into matrices, which can be described as a 
dimension-reducing process that transforms 3D geometrical 
details into matrices, such matrices can be considered as a 
collection of binary 2D images. The ANN effectively grasps the 
correlation between these matrix-based inputs and the CBDM 
simulation outcomes. For instance, with only 1700 samples, the R-
squared value of the prediction accuracy can reach 0.95 in 
Continuous Daylight Autonomy, while maintaining extremely 
high efficiency in comparison with the traditional CBDM process. 
Nonetheless, the current ANN-based model exhibits limitations 
when extending to other factors of the building environment, such 
as location, orientation, ceiling height, shading devices, room 
dimensions, wall thickness, etc. While some of these constraints 
could potentially be mitigated by expanding the dataset size, 
others, such as ceiling height and room dimensions, require more 
intricate solutions, possibly involving certain forms of Deep 
Learning techniques. 

Encouragingly, the matrix-based input methodology holds 
considerable promise, not only for the ANN model but also for 
diverse machine learning, deep learning, and other Artificial 

Intelligence methods. Concurrently, this methodology holds 
potential for predicting energy consumption, thermal comfort, and 
other aspects pertinent to research within building science. 
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