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Abstract 
Buildings are one of the leading sources of carbon emissions in the world. Most of the carbon emissions are released during the operation 
phase of the building. It is essential for buildings to provide thermal and visual comfort for the users. In the case of existing buildings, 
it is necessary to offer retrofit solutions so that the operational carbon emissions can be reduced without compromising on the other 
essential factors. In this study a Multi-Objective Optimization (MOO) of passive design strategies was conducted for a commercial 
laboratory in India situated in a moderate climate zone. The design variables considered for the study are wall and roof insulation, 
glazing material, window-wall ratio (WWR), depth of shading device and the number of shading devices used. The objective functions 
are: 1. reduced energy use intensity and operational carbon emissions, 2. increased thermal comfort hours and 3. increased daylight 
autonomy.  Rhinoceros and grasshopper software along with Ladybug and Honeybee plug-ins were used for the study which resulted in 
1296 iterations. MOO technique namely Pareto front optimization was used to optimize the objective functions. Out of 1296 solutions 
(excluding base case), 72 solutions were non-dominated. Two methods are described in the study to identify the recommendations for 
retrofit.  The first method describes a Heuristic method of selection using Design Explorer recommending 5 good solutions. In the 
second method a factor is evolved to identify the 5 best solutions in sequential order. The overall study recommends the use of EPS 
insulation for the RCC roof, WWR of 20% on all sides, 3 horizontal shading devices of depth 0.75 m for all window openings. When 
compared with the base case scenario, this solution minimizes the EUI by 3.7%, maximizes average TCH by 106.6% and maximizes 
average DA by 66.9%. The overall operational carbon emissions are reduced by 7095.6 kgCO2. 

© 2024 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction
The built environment is responsible for a significant portion of 
global energy usage accounting for 40%, energy-related 
greenhouse gas emissions accounting for 30%, waste production, 
and resource utilization [1]. Embodied and operational carbon 
emissions make up 30%–40% of global carbon emissions 
annually. Greenhouse Gases especially Carbon Dioxide are a 
significant reason for global warming. Industrialization, 
urbanization and modernization aid in the increase in the world’s 
energy consumption [2]. In the Indian context, 33% of energy 
usage is utilized by buildings, and it is rising at a rate of 8% 
annually [3]. Researchers must recognize and take into account 
several dynamic processes that are occurring around us, including 

global climate change; the depletion of fossil fuel reserves; 
growing organizational flexibility; rising occupant needs and 
comfort expectations; and rising awareness of the relationship 
between the indoor environment and occupant health and 
wellbeing, and consequently their productivity [4]. 

In 1992 a study was conducted at the Massachusetts Institute of 
Technology by scientists based on computer modeling of five 
variables: population, industrialization, pollution, food production 
and resource depletion. Most scenarios led to an overshoot going 
beyond the limits of global resources, followed by a collapse of 
global society in the second half of the 21st century. This research 
was published in the book The Limits to Growth [5]. Since 1995, 
195 nations have participated in the Conference of the Parties, 
which reviews the application of the Convention, the Kyoto 
Protocol, and the Paris Agreement and adopts decisions for the 
further development and application of these three agreements [6]. 
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By adopting the Kyoto Protocol in 1997, the European Union, 
together with 37 industrialized nations and economies in 
transition, established legally bound carbon reduction objectives. 
Over the five years from 2008 to 2012, these goals come up to an 
average 5% decrease in greenhouse gas emissions compared to 
1990 levels [7]. At COP 21 the Paris agreement was adopted and 
approved by 196 Parties in 2015 aiming to keep global warming 
far below 2 oC - 1.5oC, relative to pre-industrial levels [8]. There 
was agreement on the necessity and significance of reaching net 
zero emissions during the second half of the century [9]. Besides 
China and the United States, India was the third leading 
contributor to Carbon Dioxide Emissions in 2018. India must 
decarbonize large sectors of its economy including transportation, 
power, and real estate to achieve net zero by 2070-a vision shared 
by our Prime Minister Dr. Narendra Modi in COP 26 [10]. 

Based on estimations from the USAID ECO-III Project for 2014 
and 2015, approximately 840 million sq.m of building floor area 
in India is accounted for commercial spaces [11]. Between 2005 
and 2030, the built environment would grow five times, with over 
60% of the commercial built space having air conditioning by 
then[12]. By 2050, the commercial floor area expansion in India 
would be five times the current floor area projection, or 450%, 
based on an effective compound annual growth rate (CAGR) of 
5% [13].  

ASHRAE defines thermal comfort as the condition of mind that 
expresses satisfaction with the thermal environment [14]. 
According to NBC, 2016 the recommended temperature range for 
thermal comfort is between 180C to 300C and a relative humidity 
level ranging from 30% to 70% [15]. It also recommends the 

indoor comfort temperature conditions for air-conditioned (AC) 
offices to be between 25 °C and 30 °C with optimum condition at 
27.5 °C generally for all the five climatic zones [15]. The IMAC 
model was developed by Manu S et al., which included a 
comprehensive study with 6330 responses from 16 commercial 
buildings of various typologies namely AC buildings, NV 
buildings and mixed mode buildings situated in different climatic 
zones in India resulting in comfort temperature range of each 
month for [13].  

A MOO technique namely Pareto front optimization is used to 
chose strategies that can achieve all the objective of the study that 
is to minimize operational carbon and energy consumption; 
maximize thermal comfort hours and maximize daylight 
autonomy. In the space of objective functions for multi-objective 
optimization problems (MOOPs), the Pareto front idea denotes a 
collection of answers that are not dominated by one another but 
are nonetheless better than the other solutions in the search space 
[16]. Even with extremely complicated issues, there is always a 
need for a single solution. For this reason, multi-objective 
optimization approaches help find an optimum solution that is 
ultimately Pareto optimal—at least in the weak sense—and as 
such, it must be a member of the Pareto front [17]. Pareto fronts 
allow us to make informed decisions, as they provide trade off 
solutions to achieve the defined objectives [18]. The necessity for 
research on carbon-neutral buildings is highlighted by the fact that 
the road to carbon neutrality is still largely unknown. To achieve 
a reduction in GHG emissions and specifically carbon emissions 
from buildings, the use of passive strategies while designing 
building envelopes is inevitable. While decreasing the operational 
carbon of the building, the significance of thermal comfort and 
daylight in commercial laboratories cannot be ignored. Hence, the 
paper explores various retrofit strategies that can be used towards 
low carbon buildings while improving thermal comfort hours and 
daylight autonomy in the building through pareto front 
optimization technique. 

 
1.1. Literature studies 
Existing literature related to MOO associated with energy use, 
operational carbon, comfort hours and daylighting were reviewed. 
Building retrofit solutions can be optimized in order to achieve 
multiple objectives at the same time through trade off solutions.   

Researchers have used MOO studies to improve the building 
performance and energy efficiency in various types of buildings 
[19-23]. Gauch et al., evolved a methodology using MOO to 
optimize carbon and cost savings in the early design stage [24]. 
Renewable energy integration in buildings have also been 
incorporated in recent optimization studies resulting in low energy 
buildings or NZEBs [25-29]. Zhai et al., evolved envelope design 
recommendations by using parametric design, building 
performance simulation and NSGA 2 optimization technique 
simultaneously in the early design stage [30]. In order to make 
design decisions aligning with environmental goals Ji et al., 
evolved the generalizable generative-design-based performance 
optimization framework to improve thermal comfort, daylighting 
and solar radiation in buildings [31]. Toutou et al., achieved a 110% 
improvement in spatial daylight autonomy and a 3.5% reduction 
in EUI by using a genetic algorithmic method and tools such as 
Grasshopper, Octopus, Energy plus, Open studio, Radiance and 
Daysim for achieving energy-efficient building solutions [32]. The 

Nomenclature 
AC Air Conditioning 
ASHRAE American Society for Heating, Refrigerating and 

Air Conditioning Engineers 
CEI Carbon Emission Intensity 
CO2 Carbon dioxide 
CV RMSE Coefficient of Variation of Root Mean Square 

Error 
DA Daylight Autonomy 
DBT Dry Bulb Temperature 
E Emissivity 
EUI Energy Use Intensity 
GRIHA Green Rating for Integrated Habitat Assessment 
IMAC Indian Model for Adaptive Comfort 
LBNL Lawrence Berkley National Laboratory 
MBE Mean Bias Error 
MOO Multi-Objective Optimization 
NBC National Building Code 
NMBE Normalized Mean Bias Error 
NV Naturally ventilated 
OCE Operational Carbon Emissions 
RCC Reinforced Cement Concrete 
RMSE Root Mean Square Error 
sDA Spatial Daylight Autonomy 
TCH Thermal Comfort Hours 
U Thermal transmittance 
UDI Useful Daylight Illuminance 
VLT Visual Light Transmittance 

http://creativecommons.org/licenses/by/4.0/


292 Z. Weissman et al. / Journal of Daylighting 11 (2024) 290–311 

2383-8701/© 2024 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

method focused on design variables such as including window-to-
wall ratio (WWR), window materials, construction materials, and 
shadings [32]. MOO studies on building performance have been 
conducted by many researchers where future climate changes are 
also considered [33-35]. MOO approach was used in the study 
involving an office park by Luo et al., considering building 
parameters such as building envelope, energy consumption, 
thermal comfort, embodied carbon, renewable energy and 
economy [36]. In a study by Zhan et al., 20 different design 
variables were considered to optimize six objective functions in 
older apartments of Northern China [37]. Among the design 
variables different WWR were considered for all the facades for 
the iterations similar to the methodology adopted in the current 
study [36-38]. 

45% reduction in energy utilization was achieved annually for 
HVAC loads when a MOO genetic algorithm was employed to 
improve building envelope design factors including window size 
and insulation thickness in a study by D. Gossard [39]. The study 
conducted by Haoran Wu presents a framework to evaluate EUI, 
UDI and Thermal discomfort time percentage by investigating 
design parameters namely open able-window-area-ratio (OWR), 
window-wall-ratio (WWR), solar-heat-gain-coefficient (SHGC), 
louver depth, and wall thickness [40]. Qianyun Zhou and Fan Xue 
conducted a study on residential buildings in Hong Kong where 
reduction of 0.42% energy consumption and 9.71% improvement 
in sDA was achieved using Pareto front optimization and various 

passive design strategies such as window, corridor design and 
layout [38]. Zhou et al., used energy and economic analysis to 
determine the optimal insulation thickness for outside walls and 
the roof of an office building utilizing the building envelope 
energy-saving technology (BEEST) [41]. MOO studies have been 
conducted to improve the building performance in regions with 
Mediterranean climate [42-47]. Talaei et al., conducted research 
on WWR and shading devices optimization for school buildings 
in desert, semi arid and Mediterranean climates of Iran [48].  

The current study aims to formulate a method to recommend the 
best optimized solutions for retrofit. After thorough review of the 
existing literature, the research gap identified was the lack of 
optimized retrofit solutions for a mixed mode commercial building 
in moderate climate to achieve reduced Energy Use Intensity, 
increased Thermal comfort hours and increased daylight 
autonomy. 
 
2. Methodology 
This study aims to optimize various passive design strategies to 
derive retrofit solutions for an existing building to achieve reduced 
operational carbon, increased thermal comfort hours and increased 
daylight autonomy. In this regard, as many design variables are 
considered simultaneously, few of the best solutions can be 
recommended which will further help us to achieve multiple 
objectives at the same time. Various design iterations impact the 

 
Fig. 1. Methodology Flow chart. 
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building performance differently hence it is very crucial to identify 
the passive design variables to be considered for the study. For this 
study, the design variables chosen are: Wall insulation, Roof 
insulation, Glazing material, Window-Wall ratio, Depth of 
shading device and Number of shading devices used. The overall 
framework of the study is summarized as a flow chart in Fig. 1. 
The building under study is a Commercial Lab located in Mysore, 
India. Field measurements inside the building were carried out 
from 24th October 2023 to 27th October, 2023. Simulation model 

of the same building was done using Rhinoceros 6 and 
Grasshopper 3D software which was validated with the field 
measurements taken on site. The validated model was further used 
for annual analysis of the building with respect to the above 
defined objectives. Since the objectives are multiple and 
conflicting, a multi objective optimization technique known as the 
Pareto Front Optimization is used to explore a tradeoff between 
these objectives. The Pareto Front consists of a set of unique 
solutions that are not dominated or improved by any other 

 
Fig. 2. Average Daily Dry Bulb Temperature graph with IMAC comfort range for Mysore climate for a year. 

 

 
Fig. 3. Average Daily Relative annual global radiation graph for Mysore climate for a year. 

 

 
Fig. 4. Average Daily Relative Humidity graph for Mysore climate for a year. 
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solutions with respect to any or all the objectives. The non 
dominated solutions are chosen from the pareto front. The 
solutions are further refined by introducing bias based on various 
criteria and building standard practices. The study primarily 
focuses on spaces that have a scope for using passive design 
strategies such as offices and training room for further retrofitting. 
Spaces such as laboratories and growth conditioning rooms that 
are highly dependent on active strategies such as artificial lighting 
and air conditioning have less scope to incorporate passive design 
strategies, hence such spaces are the secondary focus of the study.   
 
2.1. Climate context 
The building under study is situated in Mysore, India at 12.3° 
North Latitude and 76.7° East Longitude. Based on NBC [15] 
2016 classification, Mysore is classified as moderate climate. The 
Koppen climate classification system categorizes Mysore’s 
climate as Aw, which stands for Tropical Savanna climate. 

Mysore generally experiences hot summers, a significant monsoon 
season with high relative humidity levels and mild winters. The 
temperature ranges from 34.2°C in summers (March to May) with 
high radiation levels from to 18.30C in winters (December to 
February) with an average annual temperature of 24.840C with low 
radiation levels as shown in Figs. 2 and 3. 

High humidity levels are present during monsoons whereas low 
humidity levels are experiences in the drier months of winter and 
early summer resulting in an annual average relative humidity of 
70.5% as observed in Fig. 4. 
 
2.2. Description of the case study 
A commercial laboratory facility situated in moderate climatic 
zone with a built up area of 1231.72 sq.m is studied (Fig. 5). The 
building typology under study is a commercial building with 
mixed mode ventilation. The office spaces are naturally ventilated 
with a scope to use daylight. The laboratory spaces are mostly air-

 
Fig. 5. (a) Commercial Lab (left) located in Mysore, India and its (b) building simulation model (right). 
 
Table 1. Features of Existing building. 

Parameters Properties Value 

Building level Total Built up Area 1231.72 sq.m 
Total Area of NV zones  702.4 sq,m 
Total Area of AC zones 529.32 sq.m 
Building geometry L shape 
Naturally Ventilated Rooms 16 rooms 
Air Conditioned rooms 20 rooms 
Total Occupancy 62 

Wall  Material Brick, 230mm 
U value K 21.95 W/m 

Roof Material RCC, 150mm 
U value K 23.53 W/m 

Glazing Material Single, Clear glass 
U value K 25.818 W/m 
SHGC 0.818 
VLT 0.884 

Window – Wall ratio North  12.8% 
South 28.4% 
East  21.18% 
West 20.09% 
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conditioned as per the laboratory requirements providing less 
scope for the use of daylight and natural ventilation. The building 
consists of many office spaces and laboratory spaces that utilize a 
large amount of operational carbon. As the spaces are used by a 
large number of people it is crucial to provide spaces that have 
thermal comfort which is indeed challenging to acquire in 
naturally ventilated spaces. 
 
2.3. Validation 
For the study, data collection was done which included collection 
of floor plans, building materials used, occupancy details, 
equipment details and user behaviour. In the overall building, field 
measurements were taken in three rooms – Office 2, Office 5 and 
Training room. Office 2 is situated in the ground floor whereas 
Office 5 and Training room is situated in the first floor as seen in 
Fig. 6. Dry bulb temperature (DBT) readings of the selected rooms 
were recorded at every 5 minute interval using Onset HOBO U12-
012 Temperature and Humidity data logger. The data loggers were 
placed on the working table in each room at a height of 0.8m to 
0.9m. These rooms were continuously monitored for four days 
from 24th October 2023 to 27th October, 2023 simultaneously.  

The basic features of the building were modeled using Rhinoceros 
6 and Grasshopper 3D. Honeybee and Ladybug plug-ins were used 
to further simulate the existing building condition using the inputs 
shown in Table 1. Schedules for occupancy, lighting, equipment, 
infiltration and ventilation were provided in detail for every room 
as per ECBC, 2017 standards [49].  

These readings were later compared with the DBT simulation 
readings derived from the grasshopper model. Statistical indices 
namely CV RMSE and NMBE are used to calibrate the simulation 
model by comparing the predicted values against the existing 
values of the hourly baseline model using the formula as shown in 
equation (1), (2) and (3) below according to ASHRAE standard 14 
guidelines [50]. ASHRAE standard 14 provides recommended 
values of CV-RMSE and NMBE for evaluating monthly and 
hourly baseline models. On comparison, the error was found to be 
in compliance with the standard guidelines as shown in Table 2. 

The RMSE is defined as the square root of the mean of the 
squared differences between the measured values Yı�  and the 
simulation values Yi , calculated using equation (1). The CV 

 
Fig. 6. (a) Ground floor plan and (b) First floor plan of the existing Commercial laboratory. 
 
Table 2. CV RMSE and NMBE achieved for the simulated model of Commercial Lab. 

Parameter ASHRAE compliance Room 02 Room 05 Training room 

CV RMSE < 30% 2.75% 10.63% 9.25% 
NMBE ± 10 0.1% 0.2% 0.3% 
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RMSE is calculated as the ratio of the root mean squared error 
(RMSE) to the mean of the dependent variable which is calculated 
using equation (2). The mean bias error (MBE) is used to assess 
the bias of a simulating model by calculating the average 
difference between the simulated values and the actual values, 
without considering their direction. The NMBE is a metric used to 
normalize the MBE index, making it comparable across different 
datasets and it is calculated using equation (3). The smaller the 
CV-RMSE and NMBE, the closer the predicted values are to the 
actual values. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    (1) 

𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑌𝑌�

 𝑥𝑥 100    (2) 

𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅 =  ∑ (𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤� )𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑌𝑌�
 𝑥𝑥 100   (3) 

Where 𝑌𝑌𝑖𝑖 is the i-th field DBT (0C) measurement taken in the three 
rooms, 𝑌𝑌𝚤𝚤�  is the corresponding DBT (0C) measurement predicted 
by the simulation model of the respective rooms, n is the total 
number of data points and 𝑌𝑌� is the average of the measured DBT 
(°C)  values over the analysis period [51]. A lower value of CV 
RMSE and NMBE ensures that the predicted values are closer to 

the observed values further validating the baseline model for 
further retrofit analysis and optimization [51].  
 
2.4. Objectives for Optimization 
The aim of the study is to provide retrofit design solutions by 
carefully considering multiple objectives and suggesting the best 
possible design interventions. The objectives considered in the 
study are as follows: 

1. Minimizing Energy Use Intensity (EUI) and OCE 
(Operational Carbon Emissions) 

2. Maximizing Daylight Autonomy (DA) 
3. Maximizing Thermal Comfort Hours (TCH) 

The design variables considered for the study are: Wall 
insulation, Roof insulation, Window Glazing, Window Wall Ratio, 
Shade Depth and Number of shades. The passive design measures 
and the iterations considered for the analysis are compiled in Table 
3. 

 
 
 
 

Table 3. Passive design measures considered for each parameter. 
Parameter Options Assembly Value 

Wall, U value  1 Brick wall 1.95 W/m2K 
2 Brick wall + EPS 0.51 W/m2K 
3 Brick wall + Cork Slab 0.69 W/m2K 
4 Brick wall + Particle board 0.96 W/m2K 
5 Brick wall + Coir board 0.54 W/m2K 

Roof, U value  1 RCC roof 3.86 W/m2K 
2 RCC roof + EPS 0.59 W/m2K 
3 RCC roof  + Cork Slab 0.85 W/m2K 
4 RCC roof  + Particle board 1.3 W/m2K 
5 RCC roof  + Coir board 0.63 W/m2K 

Glazing, U value  1 Single glazing (Clear) 5.73 W/m2K 
2 Double glazing (Clear) 2.71 W/m2K 
3 Double glazing, LowE and LowVLT 1.45 W/m2K 
4 Quad glazing, Low solar and LowE 0.61 W/m2K 

Glazing, VLT 1 Single glazing (Clear) 0.884 
2 Double glazing (Clear) 0.786 
3 Double glazing, LowE and LowVLT 0.371 
4 Quad glazing, Low solar and LowE 0.451 

Window Wall Ratio              (North facade) 1  20% 
2  40% 
3  60% 

Window Wall Ratio             (West, East and South facade) 1  20% 
2  40% 
3  60% 

Depth of Shading device – metre  
(Horizontal) 

1  0.45 m 
2  0.6 m 
3  0.75 m 

Number of Shading device - (Horizontal) 1  1 no. 
2  2 nos. 
3  3 nos 
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2.5. Performance metrics 
2.5.1. Energy Use Intensity and Operational Carbon 
Energy Use Intensity is an indicator of the energy efficiency of a 
building’s design and/or operations which is calculated by 
dividing the total energy consumed by the building in one year by 
the total gross floor area of the building expressed in energy units 
per square feet or metre [52]. EUI was calculated for the NV rooms 
and AC rooms which was a cumulative of 36 rooms. EUI is 
calculated by using mathematical equation (4) and is expressed in 
kWh/sq.m The total energy used by the building is quantified by 
considering heating load, cooling load, lighting load and 
equipment load. This factor is used to analyze the benchmarks set 
for building design and operation. 
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑢𝑢𝑢𝑢𝐸𝐸 𝐼𝐼𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸𝑢𝑢𝐼𝐼𝐼𝐼𝐸𝐸 (𝑅𝑅𝐸𝐸𝐼𝐼) =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢 𝑏𝑏𝑒𝑒 𝑇𝑇ℎ𝑒𝑒 𝑏𝑏𝑢𝑢𝑖𝑖𝑇𝑇𝑢𝑢𝑖𝑖𝑛𝑛𝑒𝑒

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺𝑒𝑒𝑇𝑇𝑢𝑢𝑢𝑢 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝐴𝐴𝑒𝑒𝑒𝑒𝑇𝑇
    (4) 

Carbon Emission Intensity (CEI) includes all the operational 
carbon emissions divided by the gross floor area [53] as expressed 
in the equation (5). It is expressed in kg CO2/sq.m. Operational 
Carbon Emissions are the emissions associated with energy used 
to operate the building or in the operation of infrastructure [54] 
which is expressed in kg CO2 and calculated using equation (6). 
Conversion factor of 0.8 tCO2/MWh is used to determine the CEI 
for the study based on the data collected from the Central 
Electricity Authority of India, version 18 [55]. These metrics help 
us to understand the energy performance of the building. 

𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 𝑅𝑅𝐸𝐸𝐼𝐼𝑢𝑢𝑢𝑢𝐼𝐼𝐶𝐶𝐸𝐸 𝐼𝐼𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸𝑢𝑢𝐼𝐼𝐼𝐼𝐸𝐸 (𝐶𝐶𝑅𝑅𝐼𝐼) =
𝑅𝑅𝐸𝐸𝐼𝐼 𝑥𝑥 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝑢𝑢𝐼𝐼𝐶𝐶𝐸𝐸 𝑓𝑓𝐶𝐶𝑓𝑓𝐼𝐼𝐶𝐶𝐸𝐸  (1) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐸𝐸𝐶𝐶𝑂𝑂 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 𝑅𝑅𝐸𝐸𝐼𝐼𝑢𝑢𝑢𝑢𝐼𝐼𝐶𝐶𝐸𝐸 (𝑂𝑂𝐶𝐶𝑅𝑅) =
𝐶𝐶𝑅𝑅𝐼𝐼 𝑥𝑥 𝑇𝑇𝐶𝐶𝐼𝐼𝐶𝐶𝑂𝑂 𝐹𝐹𝑂𝑂𝐶𝐶𝐶𝐶𝐸𝐸 𝐴𝐴𝐸𝐸𝐸𝐸𝐶𝐶   (2) 

 
2.5.2. Thermal Comfort Hours 
The IMAC (Indian model for Adaptive Comfort) model was used 
for the calculation of the number of hours in a year where the 
rooms were in thermal comfort condition. The thermal comfort 

temperature range for each month, for a mixed mode commercial 
building operating in a moderate climate was derived from the 
IMAC model. This is the only adaptive comfort standard that is 
relevant for the mixed mode commercial buildings in Indian 
context which helps in reducing energy consumption and carbon 
emissions while maintaining comfort, productivity and well-being 
of occupants [13]. Also, for this calculation, rooms which operate 
with natural ventilation and with occupancy of more than two 
hours on a working day were considered which include six offices 
and a training room. These rooms were occupied for at least 8 
hours on 260 working days. Hence, out of the 2080 working hours 
in a year, the thermal comfort hours for these seven rooms were 
calculated and an average value was considered for further 
optimization. The average thermal comfort hours metric expressed 
as ‘hours’ helps us to quantify the number of working hours in 
which thermal comfort is achieved in a year. 
 
2.5.3 Daylight Autonomy  
It is defined as the percentage of the occupancy time during the 
year when a minimum illuminance threshold is met by daylight 
alone considering overcast sky conditions throughout the year [56]. 
DA is the percentage of annual work hours during which all or part 
of a building’s lighting needs can be met through daylighting alone 
[57]. According to green building rating system GRIHA (Green 
Rating for Integrated Habitat Assessment), office buildings need 
achieve a minimum of 25% DA mandatorily for compliance 
whereas 30% DA and 35% DA will help to gain 2 points and 4 
points for the building. The rooms using daylight for the ambient 
lighting is considered for the quantification of daylight autonomy. 
The recommendations for illumination levels needed for these 
rooms were taken from NBC, 2016 [15] which were 150lux – 
750lux for offices and 200lux to 500lux for lecture rooms. Hence, 
for the second and third objective 7 rooms which were naturally 
ventilated and Non Air Conditioned were considered for the study, 
this included six office rooms in the ground floor and first floor 
and one training room in the first floor. Radiance settings for the 

 
Fig. 7. Comparison of Energy Use Intensity, Carbon Emission Intensity, Average Thermal Comfort Hours and Average Daylight Autonomy of Existing Case and Base 
Case. 
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simulation model namely ambient bounces (ab) was set to 2, 
ambient divisions (ad) was set to 5000 and limit weight (lw) was 
set to 2𝐸𝐸−05 , as recommended by LBNL (Lawrence Berkley 
National Laboratory) [58]. These setting helped to achieve better 
accuracy of the base case model upon which iterations were 
performed in the study.  
 
2.5.4. Base case formulation 
The existing building was modelled using Rhinoceros 6 as shown 
in Fig. 5 and further simulated with Grasshopper script using 
Ladybug and Honeybee plug-ins. The existing building model 
performance was analysed and EUI and CEI was 187.26 
kWh/sq.m and 149.8 kgCO2/sq.m respectively. The OCE for this 
case was 184522 kgCO2 which was quantified using equation (6). 
The average TCH was 501 hrs whereas the average DA was 
12.58%. The building uses simple construction; however, due to 
the existing shading device high thermal comfort hour and very 
low daylight autonomy was achieved. The model was simplified 
in order to thoroughly understand the effect of each design 
variable on the EUI, TCH and DA. A base case model was 
formulated in which the shading devices were removed. The base 
case model was simulated and it was observed that, EUI and CEI 
was 192.58 kWh/sq.m and 154.06 kgCO2/sq.m respectively. The 
OCE for this case was 189766.66 kgCO2. The average TCH was 
158 hrs whereas the average DA was 39.21%. On comparing the 
building performance of the existing building model and the base 
case model, it can be seen that the EUI, CEI and OCE is higher, 
TCH is lower and DA is higher as seen in Fig. 7. The base case 

model is considered for further analysis based on the three 
objectives.  

Six design variables namely Wall insulation, Roof insulation, 
Window Glazing, Window Wall Ratio, Shade Depth and Number 
of shades were used for a bi-variate analysis to understand the 
impact of each variable on EUI, Average TCH and Average DA. 
Considering the six design variables, permutation and 
combination was done and 1296 iterations were derived from the 
validated model by using ladybug and honeybee plug-ins in 
Grasshopper script. For each of the 1296 iterations, the EUI, TCH 
and DA was calculated for further analysis. Pareto front 
optimization technique was done using Python software which 
resulted in identifying 72 non-dominated solutions. The solutions 
are further analyzed to find the best design recommendations for 
retrofit. 
 
3. Results 
3.1. Design variables 
Design variables considered for the study are insulation, glazing, 
window-wall ratio, and shading devices. 
 
3.1.1. Insulation 
Thermal insulation is a technique to control heat flow for 
providing indoor thermal comfort with minimal energy use [59]. 
The existing building uses a conventional wall and roof assemble 
consisting of Brick wall with cement plaster and RCC Roof. 
Insulation material shown in Table 3 namely EPS, cork slab, 

 
Fig. 8. Effect of wall insulation and roof insulation on the energy use intensity and the average thermal comfort hours of the building. 
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particle board and coir board of 5cm thickness was considered for 
retrofit. Various permutations and combination are explored 
among these options. For instance EUI and average TCH is 
quantified by using RCC roof with EPS insulation for the roof 
assembly and simultaneously changing the wall insulation 
material with the options mentioned in Table 3. The effect of 
insulation on the EUI and TCH of the building is shown in Fig. 8. 
The wall and roof finish remains same before and after using 
insulation, hence no changes are observed with the average DA of 
the building. Significant change is not observed with EUI, a 
maximum of 2% reduction in EUI was observed with the use of 
EPS insulation for RCC roof and brick wall. However, the average 
TCH is the highest for the base case compared to the other 
iterations. The use of insulation does not improve the overall TCH 
of the building. The conventional wall and roof assembly 
maintains the building in the thermal comfort range. RCC roof 
with EPS insulation performs better is minimizing EUI whereas 

the base case option performs better in maximizing average TCH, 
hence only the conventional material is used in the iteration 
process. This helps us to narrow down the number of iterations 
involved in the study to 1296. 
 
3.1.2. Glazing material 
Windows are an important component in the design of the building 
envelope as it enhances daylight, manage heat gain, and allow 
natural ventilation thereby improving the comfort [60]. Single 
glazed clear windows are used in the existing building as shown 
in Table 1. In order to study the effect of various glazing on the 
EUI, average TCH and Average DA on the existing building – 
double glazed windows, double glazed (low Emissivity and low 
Visual Transmittance) windows and quadruple glazed (low Solar 
and low Emissivity) windows as mentioned in Table 3 were used. 
On comparison with the base case 1.27% reduction in EUI was 
observed with the use of quadruple glazed windows and 1.26% 

 
Fig. 9. Effect of various glazing material on Energy Use Intensity, Average Thermal Comfort Hours and Average Daylight Autonomy. 

 

 
Fig. 10. Effect of various Window – Wall Ratio on Energy Use Intensity, Average Thermal Comfort Hours and Average Daylight Autonomy. 
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increase in the average TCH was observed for the case of double 
glazed (low Emissivity and low Visual Transmittance) windows. 
Improvements in Average DA were not seen in any of the cases 
when compared with the base case as seen in Fig. 9.  
 
3.1.3. Window Wall Ratio 
The window-to-wall ratio (WWR) is measure in building design, 
representing the proportion of window area to the total exterior 

wall area [61]. In the existing building, WWR for the various 
facades as shown in Table 1 was used for the base case. The 
iterations for WWR considered for the study are explained in 
Table 3. For the study, three options of WWR namely 30%, 45% 
and 60% was used which was further considered for various 
permutations and combinations. For instance, iterations were 
explored by keeping the WWR for the south, west and west facade 
at 30%, 45% and 60% and simultaneously changing the WWR for 

 
Fig. 11. Effect of shading devices on Energy Use Intensity, Average Thermal Comfort Hours and Average Daylight Autonomy. 
 
Table 4. Passive design measures considered for optimization. 

Parameter Options Assembly Value 

Wall, U value  1 Brick wall 1.95 W/m2K 
2 Brick wall + EPS 0.51 W/m2K 

Roof, U value  1 RCC roof 3.86 W/m2K 
2 RCC roof + EPS 0.59 W/m2K 

Glazing, U value  1 Single glazing (Clear) 5.73 W/m2K 
2 Double glazing (Clear) 2.71 W/m2K 
3 Double glazing, LowE and LowVLT 1.45 W/m2K 
4 Quad glazing, Low solar and LowE 0.61 W/m2K 

Glazing, VLT 1 Single glazing (Clear) 0.884 
 2 Double glazing (Clear) 0.786 
 3 Double glazing, LowE and LowVLT 0.371 
 4 Quad glazing, Low solar and LowE 0.451 
Window Wall Ratio              (North facade) 1  20% 

2  40% 
3  60% 

Window Wall Ratio             (West, East and South facade) 1  20% 
2  40% 
3  60% 

Depth of Shading device – metre  
(Horizontal) 

1  0.45 m 
2  0.6 m 
3  0.75 m 

Number of Shading devices - (Horizontal) 1  1 no. 
2  2 nos. 
3  3 nos 
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north facade as shown in Fig. 10. This was done as the north facade 
receives significantly lesser direct sunlight compared to the other 
facades. The horizontal axis in Fig. 10 shows the WWR used in 
north facade and the WWR used in east, west and south facade. 
On comparison with the base case EUI decreased by 1.61% with 
the use of 30% WWR on all facades whereas the average DA 
improved by 69.89% with the use of 60% WWR on all facades. 
The average TCH was not improved for any iteration when 
compared with the base case. 

 
3.1.4. Shading device 
For the study the various iterations considered are depth of 
horizontal shading devices 0.45m, 0.6m and 0.75m used for 

window openings and the number of shading devices used i, e. 1, 
2 and 3, as compiled in Table 3 and various permutations and 
combinations were explored. Shading devices are not used in the 
base case scenario. For instance iterations were explored by 
keeping the depth of shading devices at 0.45m, 0.6m and 0.75 and 
simultaneously changing the number of shading devices as shown 
in Fig. 11. On comparison with the base case, 2.5% reduction in 
EUI and 192.6% increase in average TCH were observed when 3 
horizontal shading devices with a depth of 0.75m were used in the 
building as seen in Fig. 11. The horizontal axis in Fig. 11 shows 
depth of shading device used and the number of shading devices 
used. The average daylight autonomy was not improved for any 
iteration when compared with the base case.    

 
Fig. 12. Pareto optimal points and solution space for commercial lab. 
 
Table 5. 72 Pareto front solutions for the existing building. 

Wall        
(U-Value) 

Roof         (U 
value) 

Window    
(U value) 

WWR     (N) WWR       
(S, W, E) 

Shade 
(Depth) 

Shade 
(Number) 

EUI TCH DA 

1.95 3.86 5.73 20 20 0.6 1 190.03 398.14 65.71 
1.95 3.86 0.61 20 20 0.6 1 188.52 354.86 41.96 
1.95 0.59 0.61 20 20 0.6 1 184.28 168.29 41.96 
1.95 0.59 1.45 40 20 0.75 1 184.53 95 45.99 
1.95 3.86 5.73 60 20 0.75 1 189.84 274.57 70.96 
1.95 0.59 5.73 60 20 0.75 1 185.9 157.29 70.96 
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1.95 0.59 1.45 60 20 0.75 1 184.61 48.71 54.53 
1.95 3.86 5.73 60 60 0.75 1 195.78 213 72.99 
1.95 0.59 5.73 60 60 0.75 1 194.28 109.14 72.99 
1.95 3.86 5.73 20 20 0.45 2 190.25 422.57 65.62 
1.95 0.59 5.73 20 20 0.45 2 186.61 265.29 65.62 
1.95 0.59 1.45 40 20 0.45 2 184.95 100.29 45.93 
1.95 0.59 1.45 20 20 0.6 2 184.58 210.14 32.89 
1.95 3.86 0.61 20 20 0.6 2 188.46 371.71 41.93 
1.95 0.59 0.61 20 20 0.6 2 184.18 185.86 41.93 
1.95 0.59 1.45 40 20 0.6 2 184.64 106.86 45.91 
1.95 3.86 5.73 60 60 0.6 2 195.99 246.14 72.98 
1.95 0.59 5.73 60 60 0.6 2 194.64 133.43 72.98 
1.95 3.86 5.73 20 20 0.75 2 189.63 451.57 65.58 
1.95 0.59 5.73 20 20 0.75 2 185.59 295.14 65.58 
1.95 3.86 1.45 20 20 0.75 2 188.52 402.71 32.75 
1.95 0.59 1.45 20 20 0.75 2 184.32 216.86 32.75 
1.95 3.86 0.61 20 20 0.75 2 188.34 381.29 41.93 
1.95 0.59 0.61 20 20 0.75 2 183.97 191.29 41.93 
1.95 3.86 5.73 40 20 0.75 2 189.64 359.43 69.34 
1.95 0.59 0.61 40 20 0.75 2 184.05 83.86 54.01 
1.95 3.86 5.73 60 20 0.75 2 189.67 316.57 70.91 
1.95 0.59 5.73 60 20 0.75 2 185.64 197.29 70.91 
1.95 3.86 5.73 60 40 0.75 2 192.72 290.29 72.33 
1.95 0.59 5.73 60 40 0.75 2 189.81 170.71 72.33 
1.95 3.86 5.73 60 60 0.75 2 195.41 263.29 72.98 
1.95 0.59 5.73 60 60 0.75 2 193.71 148 72.98 
1.95 3.86 5.73 20 20 0.45 3 190.19 452.29 65.49 
1.95 0.59 5.73 20 20 0.45 3 186.53 295.57 65.49 
1.95 0.59 1.45 20 20 0.45 3 184.83 218.14 32.82 
1.95 3.86 0.61 20 20 0.45 3 188.58 378.71 42.02 
1.95 0.59 0.61 20 20 0.45 3 184.39 190.43 42.02 
1.95 0.59 0.61 60 20 0.45 3 184.71 38.43 60.15 
1.95 3.86 5.73 60 60 0.45 3 196.5 261 72.98 
1.95 0.59 5.73 60 60 0.45 3 195.48 146.71 72.98 
1.95 3.86 1.45 20 20 0.6 3 188.6 412 32.77 
1.95 0.59 1.45 20 20 0.6 3 184.48 228 32.77 
1.95 3.86 5.73 40 20 0.6 3 189.83 377.71 69.26 
1.95 0.59 5.73 40 20 0.6 3 185.93 241.57 69.26 
1.95 3.86 5.73 60 20 0.6 3 189.85 335 70.86 
1.95 0.59 5.73 60 20 0.6 3 185.95 211.71 70.86 
1.95 0.59 1.45 60 20 0.6 3 184.61 65 54.54 
1.95 0.59 0.61 60 20 0.6 3 184.41 40.86 60.13 
1.95 3.86 5.73 20 40 0.6 3 192.97 422.57 67.76 
1.95 3.86 5.73 20 20 0.75 3 189.49 483.43 65.47 
1.95 0.59 5.73 20 20 0.75 3 185.38 326.43 65.47 
1.95 3.86 1.45 20 20 0.75 3 188.43 426.57 32.72 
1.95 0.59 1.45 20 20 0.75 3 184.19 239 32.72 
1.95 3.86 0.61 20 20 0.75 3 188.26 399 41.89 
1.95 0.59 0.61 20 20 0.75 3 183.86 210 41.89 
1.95 3.86 5.73 40 20 0.75 3 189.51 394.14 69.23 
1.95 0.59 5.73 40 20 0.75 3 185.41 258.86 69.23 
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Based on the analysis made with respect to each of the design 
variables, the following options were considered for the further 
studies as compiled in Table 4 which was simulated using 
grasshopper script along with Ladybug and Honeybee plug-ins.  
The following options, upon various permutations and 
combinations resulted in 1295 iterations for the base case model 
(1296 iterations in total). It can be understood that the design 
variables considered for the study has an impact on the 
performance metrics used i.e. EUI, average TCH and average DA 
as seen in Fig. 8 to Fig. 11. However, it is challenging to make 
conclusions by quantifying the combined effect of multiple 
combinations of these design variables based on this analysis; 
hence a multi-objective optimization technique was used. 
 
4. Pareto Front Optimization 
Pareto front optimization technique was performed on the 1296 
iterations. The dependent variables namely, EUI (Dependant 
variable A), average TCH (Dependant variable B), average DA 

(Dependant variable C) and independent variables namely wall 
insulation, roof insulation, window glazing, WWR for north 
façade, WWR for west, east and south façade, depth of shading 
device and number of shading devices were defined in the Python 
script. The objective functions of the study that needs to be 
optimized are to minimize EUI, maximize average TCH and 
maximize average DA. The three objectives are assumed to have 
equal weight age. Iteration is considered to be dominant compared 
to another iteration based on the objective functions defined. A 
solution is considered non-dominated if the values of one iteration 
is as good as the other iteration in all the three dependant variables 
(A, B and C). The non-dominated solutions should have higher 
values among dependant variable B and dependant variable C 
whereas, lower values among dependant variables A. The script 
was coded to compare the dependant variables of an iteration with 
the corresponding dependant variables of the rest of the iterations 
to identify non-dominated solutions. With this method 72 non-
dominated solutions were identified.  

 

1.95 0.59 1.45 40 20 0.75 3 184.25 127.29 45.89 
1.95 0.59 0.61 40 20 0.75 3 183.94 94.29 53.78 
1.95 3.86 5.73 60 20 0.75 3 189.53 355 70.84 
1.95 0.59 5.73 60 20 0.75 3 185.43 230.43 70.84 
1.95 0.59 1.45 60 20 0.75 3 184.18 69.57 54.51 
1.95 0.59 0.61 60 20 0.75 3 184.16 43.29 60.1 
1.95 3.86 5.73 20 40 0.75 3 192.44 444.14 67.75 
1.95 0.59 5.73 20 40 0.75 3 189.41 282.29 67.75 
1.95 3.86 5.73 40 40 0.75 3 192.45 365.14 70.84 
1.95 3.86 5.73 60 40 0.75 3 192.47 330.71 72.33 
1.95 0.59 5.73 60 40 0.75 3 189.43 206.71 72.33 
1.95 3.86 5.73 20 60 0.75 3 195.06 400.14 69.03 
1.95 3.86 5.73 40 60 0.75 3 195.06 340.57 71.67 
1.95 3.86 5.73 60 60 0.75 3 195.08 311.57 72.97 
1.95 0.59 5.73 60 60 0.75 3 193.18 189.71 72.97 

 

 
Fig. 13. Parallel Coordinate Plot of the 72 Non-dominated solutions showing Design variables and Performance metrics. 
 

 
Fig. 14. Parallel Coordinate Plot (PCP) of the 37 non-dominated solutions performing better than the base case scenario. 
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The non-dominated solutions or pareto points for the existing 
commercial lab can be seen in Fig. 12 as a 3D graph. A 3D Pareto 
frontier refers to a visualization technique used in multi-objective 
optimization to represent the Pareto front in three dimensions. The 
1296 iterations are represented as dots in the solution space 
whereas the pareto points is represented with a ‘x’ mark on the dot. 
The design variables and the performance matrices of the 72 non 
dominating solutions are presented in Table 5. The solutions are 
represented in Fig. 13 as a Parallel Coordinate Plot (PCP) by using 
Design Explorer v2 which is an open source web tool. The ranges 
of non-dominated solutions recommended by the pareto front 
optimization technique for the three objectives are identified. It 

can be observed in Fig. 13 that U value of 1.95 W/m2K (Brick wall) 
for wall assembly is recommended by the pareto front for all the 
72 solutions. This shows that improving the U value of the wall 
assembly does not help in achieving the objective of our study. U 
value of 0.59 W/m2K (RCC roof with EPS insulation) for roof 
assemble is recommended for 40 solutions whereas U value of 
3.86 W/m2K (RCC roof) is observed for 32 solutions proving that 
lower U value of roof assembly helps in achieving the objectives. 
U value of 5.73 W/m2K (Single glazed panel) is recommended for 
42 solutions whereas 1.45 W/m2K (Double glazing, LowE and 
LowVLT) and 0.61 W/m2K (Quad glazing, Low solar and LowE) 
is recommended for 15 solutions each regarding glazing material. 

Table 6. 37 non-dominant solutions that perform better than the base case scenario. 
Wall        
(U-Value) 

Roof         (U 
value) 

Window    
(U value) 

WWR     (N) WWR       
(S, W, E) 

Shade 
(Depth) 

Shade 
(Number) 

EUI TCH DA 

1.95 3.86 5.73 20 20 0.6 1 190.03 398.14 65.71 
1.95 3.86 0.61 20 20 0.6 1 188.52 354.86 41.96 
1.95 0.59 0.61 20 20 0.6 1 184.28 168.29 41.96 
1.95 3.86 5.73 60 20 0.75 1 189.84 274.57 70.96 
1.95 3.86 5.73 20 20 0.45 2 190.25 422.57 65.62 
1.95 0.59 5.73 20 20 0.45 2 186.61 265.29 65.62 
1.95 3.86 0.61 20 20 0.6 2 188.46 371.71 41.93 
1.95 0.59 0.61 20 20 0.6 2 184.18 185.86 41.93 
1.95 3.86 5.73 20 20 0.75 2 189.63 451.57 65.58 
1.95 0.59 5.73 20 20 0.75 2 185.59 295.14 65.58 
1.95 3.86 0.61 20 20 0.75 2 188.34 381.29 41.93 
1.95 0.59 0.61 20 20 0.75 2 183.97 191.29 41.93 
1.95 3.86 5.73 40 20 0.75 2 189.64 359.43 69.34 
1.95 3.86 5.73 60 20 0.75 2 189.67 316.57 70.91 
1.95 0.59 5.73 60 20 0.75 2 185.64 197.29 70.91 
1.95 0.59 5.73 60 40 0.75 2 189.81 170.71 72.33 
1.95 3.86 5.73 20 20 0.45 3 190.19 452.29 65.49 
1.95 0.59 5.73 20 20 0.45 3 186.53 295.57 65.49 
1.95 3.86 0.61 20 20 0.45 3 188.58 378.71 42.02 
1.95 0.59 0.61 20 20 0.45 3 184.39 190.43 42.02 
1.95 3.86 5.73 40 20 0.6 3 189.83 377.71 69.26 
1.95 0.59 5.73 40 20 0.6 3 185.93 241.57 69.26 
1.95 3.86 5.73 60 20 0.6 3 189.85 335 70.86 
1.95 0.59 5.73 60 20 0.6 3 185.95 211.71 70.86 
1.95 3.86 5.73 20 20 0.75 3 189.49 483.43 65.47 
1.95 0.59 5.73 20 20 0.75 3 185.38 326.43 65.47 
1.95 3.86 0.61 20 20 0.75 3 188.26 399 41.89 
1.95 0.59 0.61 20 20 0.75 3 183.86 210 41.89 
1.95 3.86 5.73 40 20 0.75 3 189.51 394.14 69.23 
1.95 0.59 5.73 40 20 0.75 3 185.41 258.86 69.23 
1.95 3.86 5.73 60 20 0.75 3 189.53 355 70.84 
1.95 0.59 5.73 60 20 0.75 3 185.43 230.43 70.84 
1.95 3.86 5.73 20 40 0.75 3 192.44 444.14 67.75 
1.95 0.59 5.73 20 40 0.75 3 189.41 282.29 67.75 
1.95 3.86 5.73 40 40 0.75 3 192.45 365.14 70.84 
1.95 3.86 5.73 60 40 0.75 3 192.47 330.71 72.33 
1.95 0.59 5.73 60 40 0.75 3 189.43 206.71 72.33 
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The normal double glazed with U value of 2.71 W/m2K was not 
recommended by the pareto front. Most solutions show that the 
single glazed panel is sufficient to achieve the objectives. 31, 13 
and 28 solutions were observed for the WWR of north façade at 
20%, 40% and 60% respectively. 52, 8 and 12 solutions were 
observed for the WWR of south, east and west façades at 20%, 40% 
and 60% respectively. Overall, it can be summarized that 20% 
WWR works best for all the facades and has the most influence on 
the objectives. Horizontal shading device of depth 0.75 m was 
recommended by 43 solutions, whereas horizontal shading device 
of depth 0.45 m and 0.6 m was recommended by 11 and 18 
solutions respectively. The use of 3 horizontal shading devices 
was recommended by 40 solutions however the use of 1 and 2 

horizontal shading devices was recommended by 9 and 23 
solutions respectively. Hence, it can be concluded that 3 numbers 
of shading devices of depth 0.75 m has the most influence on the 
objectives.  

The pareto points identified by the optimization technique are 
considered as non dominated solutions which means, each data 
point present on the pareto front is superior when compared to the 
other points on the solution space [62]. Hence, none of the other 
solutions are performing better than the non dominated set of 
solutions; however these non dominated solutions may not 
necessarily meet all the objectives framed in the study. In order to 
narrow down the selection, the solutions that perform worse than 
the base case scenario are identified. These solutions are not 

 
Fig. 15. Parallel Coordinate Plot (PCP) of the 27 non-dominated solutions after selecting 65% to 73% Average DA range. 

 

 
Fig. 16. Parallel Coordinate Plot (PCP) of the 9 non-dominated solutions for EUI range of 185.38 kWh/sq.m to 186.61  kWh/sq.m. 

 

 
Fig. 17. Parallel Coordinate Plot (PCP) of the 18 non-dominated solutions for EUI range of 189.41 kWh/sq.m to 192.47 kWh/sq.m. 

 

 
Fig. 18. Parallel Coordinate Plot (PCP) of the top 5 best solutions among the 1296 iterations. 

http://creativecommons.org/licenses/by/4.0/


306 Z. Weissman et al. / Journal of Daylighting 11 (2024) 290–311 

2383-8701/© 2024 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

considered for recommendations as design solutions even if one 
among the three objectives is not satisfied. 

 
4.1.1. Energy use intensity and Carbon Emission Intensity 
Minimizing the EUI and CEI for the existing building is the first 
objective considered for the study. In the base case scenario 
considered for the study, EUI is 192.58 kWh/sq.m. The non-
dominated solutions derived from the pareto front optimization 
technique shows that the EUI and CEI ranges from 183.85 
kWh/sq.m to 196.5 kWh/sq.m and 147.08 kgCO2/sq to 
157.20kgCO2/sq.m respectively as seen in Table 5. In the base 
case scenario considered for the study, EUI is 192.58 kWh/sq.m 
and CEI is 154.06 kgCO2/sq.m. A maximum of 4.52% reduction 
in EUI and CEI can be achieved in the base case scenario by 
incorporating passive design retrofit strategies alone to the 
existing commercial lab. Among the non-dominated solutions, 14 
solutions perform worse than the EUI and CEI of the base case.  
 
4.1.2. Thermal Comfort hours 
Maximizing the Average Comfort Hours for the base case scenario 
is the second objective of the study. Among the non-dominated 
solutions, the average TCH ranges from 38.42 hours to 483.42 
hours as seen in Table 5. The average TCH is 158 hrs for the base 
case scenario. A maximum of 205.96% increase in the average 
TCH can be achieved by incorporating passive design retrofit 
strategies for the base case scenario. Among the non-dominated 
solutions, 17 solutions perform worse than the average TCH of 
base case scenario.  
 
4.1.3. Daylight autonomy 
Maximizing the average DA for the base case scenario is the third 
objective of the study. Among the non-dominated solutions, the 
average DA ranges from 32.71% to 72.98% as seen in Table 5. 
The average DA is 39.21% for the base case scenario. 86.14% 
increase in the average DA of the commercial lab can be achieved 
by incorporating these passive design strategies for the base case 
scenario. Among the non-dominated solutions, 8 solutions 
perform worse than the average DA of base case scenario.   

 
4.2. Optimized design solutions: Method 1 
39 non-dominated solutions performed worse than the base case 
scenario regarding one or more objectives considered for the study. 
The remaining 37 non dominated solutions perform better than the 
base case scenario regarding all the three objectives. These 
solutions are presented as a PCP in Fig. 14 and the values are 
presented in Table 6. 

On analyzing the distribution of the 37 non-dominated solutions, 
it can be observed that 10 solutions have average DA that ranges 
from 40% to 45% whereas 27 solutions have average DA that 
ranges from 65% to 73% as seen in Fig. 15. By considering the 
average DA range of 65% to 73% the EUI ranges from 185.38 
kWh/sq.m to 190.24 kWh/sq.m.  

Among the 27 solutions with average DA ranging from 65% to 
73%, it can be observed that the EUI is concentrated in the range 
of 185.38 kWh/sq.m to 186.61 kWh/sq.m and 189.41 kWh/sq.m 
to 192.47 kWh/sq.m. Among the 9 solutions with lower range of 
185.38 kWh/sq.m to 186.61 kWh/sq.m as seen in Fig. 16, the 
average TCH ranges from 197.2 hours to 326.4 hours.  

However, for the 18 solutions with higher range of 189.41 
kWh/sq.m to 192.47 kWh/sq.m as seen in Fig. 17, the average 
TCH ranges from 170.7 hours to 483.4 hours.  

The main objective of the study is to design low operational 
carbon buildings, hence the 9 solutions with lower range of EUI is 
considered. Among these 9 solutions, the best 5 solutions which 
result in a higher range of average TCH is selected and presented 
as a PCP as seen in Fig. 18.  

The 5 best solutions that can be recommended as best design 
retrofit solutions are also presented in Table 7. Based on this 
method, all the five best retrofit solution recommend the use of 
Brick wall, RCC with EPS insulation, and single glazed windows. 
Among the 5 solutions, 4 solutions recommend 20% WWR on all 
facades with 2 or 3 horizontal shading devices of 0.45m or 0.75m 
work effectively. Whereas, one solution recommends 40% WWR 
for the north façade and 20% WWR for all other facades with 3 
shading devices of 0.75m. By incorporating this solution, EUI of 
185.41 kWh/sq.m to 186.61 kWh/sq.m, CEI of 148.3 kgCO2/sq.m 
to 149.28 kgCO2/sq.m, average TCH of 258.8 hrs to 326.42 hrs 

Table 7. 5 best retrofit solutions among the 9 non-dominated solutions for EUI range of 185.38 kWh/sq.m to 186.61  kWh/sq.m. 
Wall        (U-

Value) 
Roof         (U 

value) 
Window    
(U value) 

WWR     (N) WWR       
(S, W, E) 

Shade 
(Depth) 

Shade 
(Number) 

EUI TCH DA 

1.95 0.59 5.73 20 20 0.45 2 186.61 265.29 65.62 
1.95 0.59 5.73 20 20 0.75 2 185.59 295.14 65.58 
1.95 0.59 5.73 20 20 0.45 3 186.53 295.57 65.49 
1.95 0.59 5.73 20 20 0.75 3 185.38 326.43 65.47 
1.95 0.59 5.73 40 20 0.75 3 185.41 258.86 69.23 

 

 
Fig. 19. Parallel Coordinate Plot (PCP) of the 37 non-dominated solutions performing better than the base case scenario after EUI, average TCH and average DA are 
normalized 
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and average DA of 69.23% to 65.47% can be achieved. When 
compared with the base case, this solutions minimizes the EUI and 
CEI by 3.09% to 3.73%, maximizes average TCH by 106.6% to 
63.83% and maximizes average DA by 76.5% to 66.9%. 
 
4.3. Optimized design solutions: Method 2 
The 5 best solutions that can be recommended are presented in 
Table 7, however they are not ranked. In order to do that, the 37 
non-dominated solutions which perform better than the base case 
scenario presented in Table 6 are considered and the values of the 
three objective functions namely EUI, average TCH and average 

DA are normalized as seen in Table 8. The values are presented as 
a PCP in Fig. 19. 

The normalization of the data is done using the standard score 
mathematical equation (7), 

z =  x− µ
σ

         (7) 
where z is the standardized absolute value of raw score X. µ is the 
mean of the population and σ is the standard deviation of the 
population [63]. 

Based on the three objectives of the study, a factor is derived by 
using equation (8). Table 8 shows a series of factors derived for 
the 37 non-dominated solutions.  

𝐹𝐹𝐴𝐴𝐶𝐶𝑇𝑇𝑂𝑂𝑅𝑅 = (𝐴𝐴𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝐶𝐶𝑇𝑇 + 𝐴𝐴𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸 𝐷𝐷𝐴𝐴) −  𝑅𝑅𝐸𝐸𝐼𝐼    (8) 

Table 8. 37 Non-dominated solutions with normalized values of EUI, average TCH and average DA. 
Wall        (U-

Value) 
Roof         

(U value) 
Window    
(U value) 

WWR   
(N) 

WWR       
(S, W, E) 

Shade 
(Depth) 

Shade 
(Number) 

N_EUI N_TCH N_DA FACTOR 

1.95 3.86 5.73 20 20 0.6 1 0.78 0.94 0.34 0.5 
1.95 3.86 0.61 20 20 0.6 1 0.18 0.46 -1.59 -1.31 
1.95 0.59 0.61 20 20 0.6 1 -1.52 -1.59 -1.59 -1.67 
1.95 3.86 5.73 60 20 0.75 1 0.7 -0.42 0.77 -0.35 
1.95 3.86 5.73 20 20 0.45 2 0.87 1.21 0.34 0.68 
1.95 0.59 5.73 20 20 0.45 2 -0.58 -0.52 0.34 0.4 
1.95 3.86 0.61 20 20 0.6 2 0.16 0.65 -1.6 -1.1 
1.95 0.59 0.61 20 20 0.6 2 -1.55 -1.4 -1.6 -1.44 
1.95 3.86 5.73 20 20 0.75 2 0.62 1.53 0.33 1.24 
1.95 0.59 5.73 20 20 0.75 2 -0.99 -0.19 0.33 1.13 
1.95 3.86 0.61 20 20 0.75 2 0.11 0.75 -1.6 -0.95 
1.95 0.59 0.61 20 20 0.75 2 -1.64 -1.34 -1.6 -1.29 
1.95 3.86 5.73 40 20 0.75 2 0.63 0.51 0.64 0.53 
1.95 3.86 5.73 60 20 0.75 2 0.64 0.04 0.77 0.17 
1.95 0.59 5.73 60 20 0.75 2 -0.97 -1.27 0.77 0.47 
1.95 0.59 5.73 60 40 0.75 2 0.69 -1.56 0.88 -1.37 
1.95 3.86 5.73 20 20 0.45 3 0.85 1.54 0.33 1.02 
1.95 0.59 5.73 20 20 0.45 3 -0.62 -0.19 0.33 0.75 
1.95 3.86 0.61 20 20 0.45 3 0.2 0.73 -1.59 -1.07 
1.95 0.59 0.61 20 20 0.45 3 -1.47 -1.35 -1.59 -1.46 
1.95 3.86 5.73 40 20 0.6 3 0.7 0.71 0.63 0.65 
1.95 0.59 5.73 40 20 0.6 3 -0.86 -0.78 0.63 0.7 
1.95 3.86 5.73 60 20 0.6 3 0.71 0.24 0.76 0.3 
1.95 0.59 5.73 60 20 0.6 3 -0.85 -1.11 0.76 0.5 
1.95 3.86 5.73 20 20 0.75 3 0.56 1.88 0.32 1.64 
1.95 0.59 5.73 20 20 0.75 3 -1.08 0.15 0.32 1.55 
1.95 3.86 0.61 20 20 0.75 3 0.08 0.95 -1.6 -0.73 
1.95 0.59 0.61 20 20 0.75 3 -1.68 -1.13 -1.6 -1.05 
1.95 3.86 5.73 40 20 0.75 3 0.57 0.9 0.63 0.95 
1.95 0.59 5.73 40 20 0.75 3 -1.06 -0.59 0.63 1.1 
1.95 3.86 5.73 60 20 0.75 3 0.58 0.46 0.76 0.65 
1.95 0.59 5.73 60 20 0.75 3 -1.06 -0.91 0.76 0.91 
1.95 3.86 5.73 20 40 0.75 3 1.74 1.45 0.51 0.21 
1.95 0.59 5.73 20 40 0.75 3 0.53 -0.34 0.51 -0.36 
1.95 3.86 5.73 40 40 0.75 3 1.75 0.58 0.76 -0.41 
1.95 3.86 5.73 60 40 0.75 3 1.75 0.2 0.88 -0.67 
1.95 0.59 5.73 60 40 0.75 3 0.54 -1.17 0.88 -0.82 
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The three dependent variables in equation (8) namely EUI, 
average TCH and average DA are used in a linear combination. 
The main objective of the study is decrease EUI, increase TCH 
and increase DA. In order to do that equal weight age is given to 
all the three objective functions. In the equation, Average TCH 
and Average DA are added as the values of these variables need 
to be improved when compared to the base case scenario, whereas 
EUI is subtracted as this variable needs to be reduced. The factor 
with the highest value performs the best. The factor will be higher 
provided the values of Average TCH and Average DA is higher 
and the value of EUI is lower. The 5 best solutions are identified 
using this method and are presented in a sequential order in Table 
9. PCP of the best solution among these 5 solutions is highlighted 
in Fig. 20. 

Hence the resultant maxima highlighted in Fig. 20 is 
recommended as the best solution among all the 1296 iterations. 
Based on this method, the best retrofit solution would be to use 
EPS insulation for the RCC roof, WWR of 20% on all sides, 3 
horizontal shading devices of depth 0.75 m for all window 
openings. Single glazed windows and brick wall assemble is best 
suited for the objectives of the study. By incorporating this 
solution, EUI of 185.38 kWh/sq.m, CEI of 148.3 kgCO2/sq.m 
average TCH of 326.42 hrs and average DA of 65.46% can be 
achieved. When compared with the base case, this solution 
minimizes the EUI and CEI by 3.7%, maximizes average TCH by 
106.6% and maximizes average DA by 66.9%. The operational 
carbon is reduced from 189766.66 kgCO2 to 182670.97 kgCO2. 
 
5. Discussions 
When buildings are not efficiently designed by using these passive 
design strategies, users need to depend on active strategies 
increasing the energy use and operational carbon of the building 
[64].  Thermal comfort and visual comfort are important 
parameters that ensure workers to use the space efficiently for a 
prolonged period of time. Passive design strategies contribute 
significantly in achieving thermal and visual comfort in 
commercial buildings. Hence it is important to analyse the existing 
buildings which have a scope for retrofit regarding energy use, 

thermal comfort and visual comfort. While it is easier to 
incorporate passive design measures as retrofit solutions 
considering a focused singular objective, it is necessary to identify 
optimized solutions which align with multiple-objectives. This 
study mainly focuses on retrofitting buildings to low carbon 
buildings along with improving thermal comfort and visual 
comfort of the users.  

A similar study was done in UAE by Abdeen et al., where 
passive design strategies such as U value of insulation and glazing 
material and incorporation of window shading devices were 
considered to reduce energy use and discomfort hours by using 
MOO approach [65]. Design variables such as Wall and Roof 
composition, glazing type, WWR and window shading similar to 
the current study was used by Zahra Benaddi et al., to optimize 
Carbon emissions, cost and discomfort hours for various climatic 
zones [66]. Their design recommendation to include insulation in 
the roof assembly aligns with the current study [66]. According to 
study by Rahul Verma et al., which involved 18 Indian cities, he 
concluded that buildings situated in moderate climate require 
thinner heat resistance material in comparison to composite 
regions, hence most of the solutions in the current study 
recommends roof with EPS insulation [62]. 

According to the study by E.D. Giouri et al., on high rise office 
buildings situated in Mediterranean climatic regions to achieve 
reduction of energy demand, maximize energy production, and 
increase comfort levels in a building since they lead to reduced 
solar heat gains and reduced cooling loads, findings suggest that 
WWR of 20% for all facades were optimal which aligns with the 
current study [67]. Also, the study [67] concluded that the U value 
of wall and window glazing has the least impact on EUI similar to 
the current study. 

Shading device optimization was done on education buildings 
in Savzevar city by Dokhanian et al., using MOO technique 
considering the 3E factors – Energy, Economic and 
Environmental factors which concluded that among 3600 
iterations, simple horizontal overhang of 1m length performs the 
best [68]. The number and depth of shading devices used in this 
research [68] was one of the important variables to influence the 

Table 9. Sequential order of 5 best non-dominated solutions. 
Wall        (U-
Value) 

Roof         
(U value) 

Window    
(U value) 

WWR   
(N) 

WWR       
(S, W, E) 

Shade 
(Depth) 

Shade 
(Number) 

N_EUI N_TCH N_DA FACTOR 

1.95 3.86 5.73 20 20 0.75 3 0.56 1.88 0.32 1.64 
1.95 0.59 5.73 20 20 0.75 3 -1.08 0.15 0.32 1.55 
1.95 3.86 5.73 20 20 0.75 2 0.62 1.53 0.33 1.24 
1.95 0.59 5.73 20 20 0.75 2 -0.99 -0.19 0.33 1.13 
1.95 0.59 5.73 40 20 0.75 3 -1.06 -0.59 0.63 1.1 

 

 
Fig. 20. PCP of the best solution highlighted among the 5 non dominated solutions. 
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EUI of the building as observed in the current study. In order to 
improve the thermal comfort and energy efficiency in NV offices 
situated in Burkina Faso, Nathan Zoure and Vincenzo Genovese 
concluded that horizontal shading devices and 30% WWR reduces 
EUI by 14.9% and improves sDA by 50% [69].  

Similar to the current study Mohammad Hakimazari et al., has 
also used Grasshopper and Python to perform MOO in order to 
improve sDA, Daylight Glare Probability, EUI, and Thermal 
comfort by 43.6%, 52.77%, 13.9, and 3.696%. The use of design 
variables related to WWR and shading devices in the office spaces 
of Tehran, Iran highlights the influence of these design variables 
on the energy, thermal and visual comfort parameters similar to 
the current study [70]. Most references have used sDA and UDI, 
as daylight parameters for visual comfort in their study but the 
authors have selected DA because in the Indian context the 
GRIHA rating system used DA parameter in order to improve the 
efficiency of the building [71]. 
The limitation of the study is that economical factors are not 
considered in the MOO study, however, when it comes to material 
selection, best suited or locally available materials are prioritized. 
Further, potential of renewable energy options were not explored 
which could enable the building to reach zero carbon status. Also, 
the study does not quantify the payback period for the investments 
taken up through the retrofit design recommendations. 
 
6. Conclusion 
In this study pareto front optimization technique has aimed to 
reduce operational carbon emissions in the building along with 
improving the thermal and visual comfort for the users of the 
building. This paper mainly focuses on the influence of passive 
design strategies in mixed mode commercial building located in 
moderate climatic zone. Six design variables were used namely, 
wall insulation, roof insulation, glazing material, window-wall 
ratio (WWR), depth of shading device and the number of shading 
devices in order to optimization EUI, CEI, TCH and DA. The 
authors were able to recommend best optimized design solutions 
for retrofit in the areas of energy, carbon, daylight and comfort 
using two methods. The study helps us to quantify the 
improvements achieved regarding the three objectives for this case. 
The findings of the study are as follows: 
• The improvements seen with respect to the energy 

consumption in buildings is less compared to vast 
improvements observed in the areas of daylight and comfort. 
Reduction of energy consumption by 3.9% was the 
maximum that could be achieved without considering the 
other objectives. 

• The best solution recommended by both the methods is the 
use of EPS insulation for the RCC roof, WWR of 20% on all 
sides and 3 horizontal shading devices of depth 0.75 m for 
all window openings resulting in the reduction of EUI by 
3.7%, increase in average TCH by 106.6% and increase in 
average DA by 66.9%.    

• The researchers were able to conclude with certainty that few 
materials used in the base case scenario works best hence, 
keeping us from making unnecessary and unwanted changes 
that do not cater to the objective. In this case, brick wall and 
single glazed windows work efficiently to achieve the three 
objectives of the study.  

• Among the design variables considered for the study shading 
devices have the most impact on reducing the EUI, CEI and 
TCH of the building. WWR has the most impact on the 
average DA in the building. 

This study provides optimum design recommendations to 
transform buildings into low carbon buildings. These are practical 
solutions that also improve the thermal comfort and visual comfort 
in the building. Hence, it is important to consider multiple 
objectives consecutively during the decision making process of 
building retrofit. 
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