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ABSTRACT

Outdoor urban spaces are essential to residents’ well-being, yet their thermal comfort is increasingly compromised
by urbanization and climate change. Although urban morphology has been widely studied, its effects on human
thermal comfort within mi-croclimates remain inadequately understood. This study addresses this gap by exam-ining
the interactions between urban morphology, microclimate, and pedestrian ther-mal comfort. We employed a
systematic literature review guided by the PRISMA framework, alongside parametric thinking using General
Morphological Analysis (GMA) to systematically explore how variations in urban form parameters influence
microclimatic conditions and pedestrian thermal comfort. The study’s objectives were threefold: (1) to systematically
analyze the existing literature, identify key trends, and uncover knowledge gaps; (2) to explore the psychological,
physical, and social factors influencing thermal perception; and (3) to assess how urban morphological features affect
microclimate and pedestrian thermal comfort. To address these challenges, we developed a novel framework, Design
Tools, which quantitatively links urban mor-phology parameters, outdoor thermal indices, and pedestrian comfort. By
prioritizing outdoor thermal comfort in urban design, this approach offers valuable insights to en-hance climate-
responsive design strategies and improve pedestrian well-being amid the growing challenges of urban heat islands.

Keywords: general morphological analysis, outdoor thermal comfort, parametric thinking, urban morphology

1. INTRODUCTION

The global urban population is projected to grow from 56% in
2020 to 68% by 2050, while climate models indicate a potential
rise of 1.5°C in global temperatures over the next two to three
decades, accompanied by elevated risks of severe climate impacts
[1,2]. Increasing energy demands across buildings, transportation,
and industry are the primary drivers of this trend. Urban areas, as
centers of human activity, currently consume approximately 66%
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of the world’s primary energy and contribute over 71% of energy-
related greenhouse gas emissions [3-6]. Continued urbanization
and economic growth are expected to increase energy
consumption by 70% and carbon emissions by 50% by 2050
relative to 2013 levels [2]. Rapid urban expansion necessitates
high-density ~ development, profoundly  shaping urban
morphology, influencing energy dynamics, and intensifying the
urban heat island (UHI) effect [7,8]. These challenges underscore
the critical need for integrated mitigation strategies and adaptive
measures, including nature-based solutions, to support sustainable
and climate-resilient urban futures [3,9]. Urban morphology,
particularly the spatial organization of buildings and open spaces,
strongly influences outdoor thermal comfort, affecting pedestrian
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NOMENCLATURE
AT Apparent Temperature UM Urban Morphology
DI Discomfort Index UF Urban Form
ESI Environmental Stress Index UHI Urban Heat Island
ET Effective Temperature UG Urban Green
H Humidex UGS Urban Green Spaces
HI Heat Index LAI Leaf Area Index
RSI Relative Strain Index UGI Urban Green Infrastructure
WBGT Wet-Bulb Globe Temperature Index GI Green Infrastructure
wcCI Wind Chill Index UWB Urban Water Body
wCT Wind Chill Temperature GHG Greenhouse Gas
COMFA COMfort Formula co2 Carbon Dioxide
ETU Universal Effective Temperature LST Land Surface Temperature
HL Heat Load Index 2D Two-dimensional
HTCI Outdoor Human Thermal Comfort Index 3D Three-dimensional
ITS Index of Thermal Stress FAR Floor Area Ratio
PHS Predicted Heat Strain SVF Sky View Factor
mPET Modified Physiological Equivalent Temp H/W Height-to-Width Ratio
OUT SET* Standard Effective Temperature (Outdoor) WWR Window-to-Wall Ratio
PMV Predicted Mean Vote SRI Solar Reflectance Index
PET Physiological Equivalent Temperature NW Northwest
PT Perceived Temperature NE Northeast
SET* Standard Effective Temperature SE Southeast
STI Subjective Temperature Index Sw Southwest
UTCI Universal Thermal Climate Index Vv Air Velocity
IREQ Required Clothing Insulation WD Wind Direction
N4 Thermal Sensation Vote WS Wind Speed
ASV Actual Sensation Vote w Wind
TSI Tropical Summer Index Ta Air Temperature
PRISMA Preferred Reporting Items for Systematic Reviews RH Relative Humidity
and Meta-Analyses Met Metabolic Rate
GMA General Morphological Analysis Iclo Clothing Insulation
SLR Systematic Literature Review PTC Pedestrian Thermal Comfort
ASHRAE  American Society of Heating, Refrigerating and Air-  OT Outdoor Thermal
Conditioning Engineers EN European Standards
1SO International Organization for Standardization
SDGs United Nations' Sustainable Development Goals

well-being and satisfaction [10,11]. Thermal comfort, as defined
by the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE), refers to the state of mental
satisfaction with the thermal environment. Ensuring outdoor
thermal comfort has become essential for public health amid
accelerating urbanization and increasing extreme heat events
[12,13]. Although traditional research has primarily addressed
indoor thermal comfort, understanding outdoor conditions
requires a paradigm shift embracing the complex interactions
among environmental variables, urban form, and human
perception [14]. Assessing outdoor conditions requires
consideration of complex interactions among environmental
variables, urban form, and human perception [15,16]. Urban
morphology encompasses both the physical characteristics of
buildings and their spatial arrangement within urban areas [17,18].
Features such as urban canyons, building form and orientation,
construction materials, vegetation, and water bodies significantly
impact the urban microclimate [19-21]. Microclimatic conditions

including air and surface temperature, humidity, wind speed, and
wind direction are shaped by building attributes such as height,
fagade design, orientation, and incorporation of green materials
[22-25]. Given the substantial effects of microclimates on outdoor
thermal comfort, integration of human factors such as activity
level, age, gender, clothing, cultural practices, and social norms is
essential for accurate evaluation [26-29]. Recognizing the
dynamic interplay between environmental and human factors
supports the development of sustainable urban environments and
enhances adaptive capacity in response to climate change [18,30].

This research investigates the influence of urban morphology on
microclimates and pedestrian thermal comfort. It evaluates a range
of thermal comfort indicators applicable to outdoor environments,
assessing implications for human health and alignment with urban
design objectives. By applying established benchmarks and
thermal comfort thresholds, adaptive strategies can be developed
to mitigate UHI effects and respond to local environmental
conditions. The study aligns with the United Nations Sustainable
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Fig. 1. Five-stage framework: (1) Research Initiation, (2) Systematic Review (PRISMA), (3) Pa-rameter Identification, (4) Morphological Analysis (GMA +
CCA), and (5) Design Tool Develop-ment—Iinking urban morphology, thermal comfort, and human-responsive design.

Development Goals, particularly Target 13 on Climate Action
[31], emphasizing the role of urban resilience in addressing
increasing urban heat challenges [32]. Cities are conceptualized as
dynamic systems, where environmental and human factors are
intricately  interconnected, facilitating a comprehensive
understanding of complex urban interactions. The research
addresses two primary questions:

1. How does urban morphology influence pedestrian thermal
comfort in urban environments?

2. How can a parametric design tool be developed to integrate
urban morphology and optimize pedestrian thermal
comfort?

The study is structured into methodology, thematic literature
review, presentation of the design tool, and key findings,
providing insights to inform adaptive strategies for mitigating the
effects of urban heat islands.

2. METHODOLOGY: SYSTEMATIC REVIEW AND
PARAMETRIC THINKING

A structured five-stage research framework was applied (Fig. 1):
(1) Research Initiation, (2) Systematic Literature Review, (3)
Parameter Identification, (4) General Morphological Analysis
(GMA), and (5) Evaluation and Design Tool Development. This
framework systematically explores the relationship between urban
morphology and outdoor thermal comfort, emphasizing the role of
the urban heat island (UHI) and integrating environmental,
morphological, and human factors for climate-responsive urban
design.

2.1. Systematic literature review

A systematic literature review was conducted following the
PRISMA protocol (Fig. 2), to ensure transparent and rigorous
selection of relevant studies. Peer-reviewed publications from
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Fig. 2. PRISMA flow diagram illustrating the systematic literature review process, including identification, screening, eligibility, and inclusion of studies.

2015 to 2025 were searched in Scopus and Google Scholar,
covering research on urban morphology, outdoor thermal comfort
(OTC), and microclimate. The period was selected to capture
recent developments and trends in the field. The initial search
yielded 1,901 records. After removing 250 duplicates, 1,651
records were screened based on titles, abstracts, and keywords.
Inclusion criteria encompassed relevance to urban morphology,
outdoor thermal comfort indices, microclimate, UHI, and human
factors. Exclusion criteria included indoor thermal comfort
studies, energy simulations, non-English publications, and non-
urban scale studies. Following screening, 1,080 records remained,
and 571 full-text articles were assessed for eligibility. After
applying exclusion criteria at the full-text stage, 330 studies were
considered eligible. Ultimately, 186 studies were included in the
synthesis, representing the most relevant and high-quality research
for this study.

2.2. Parametric framework for urban morphology and
outdoor thermal comfort using generalized
morphological analysis (GMA)

To examine human interaction with urban morphology under UHI
conditions, a structured three-stage parameter specification
process was conducted. The process aimed to extract and organize
key variables influencing human interaction across environmental,
spatial, and behavioral dimensions.

In the first stage, comprehensive parametric identification was
conducted through an extensive literature review. Key variables
were identified across multiple scales of the built environment,
including urban density and form, canyon geometry and
orientation, surface materials (e.g., greenery, water features),
building characteristics, thermal comfort indices, and pedestrian-
level behavioral factors In the second stage, Generalized
Morphological Analysis (GMA) was applied to explore potential
interactions among variables and develop new system
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Table 1. Parameter analysis of urban morphology and human comfort using the Generalized Morphological Analysis (GMA) method. The table illustrates
the relationships between urban morphological parameters, thermal comfort indices, and human factors. Checkmarks indicate significant interactions,
highlighting the multidimensional effects of urban form on outdoor thermal comfort under UHI conditions.

Human

Direct influences Indirect influences

Z = £ = 5 528 £ = £ 8 .S
S 22 o5 5 sE 8 5 8 n )
= % 2 = T‘E z = N 2
s £ 2 B2 2 <
= = & = Z =
= S ~ <3
S %)
aa)]
Parametric Urban Morphology Urban Density and Form v v v v v v v
Urban Canyons and Orientation v v v
Urban Material (Green, Water) v v v v v v v v
Building Characteristics v v v v
Thermal Out-door Comfort- Index PMV v v v v v v
PET v v v v
WBGT v v v v
UTCI v v v v v
TSV v v v v v v v

configurations [33]. Constraint Cross-Analysis (CCA) was
integrated to ensure internal consistency within the GMA
framework. Incompatible parameter combinations were
systematically eliminated through pairwise comparisons, refining
the morphological matrix into a coherent and viable design space
(Table 1). In the final stage, insights from the GMA-CCA process
informed the development of a climate-responsive design tool.
This tool provides evidence-based morphological configurations
to enhance outdoor thermal comfort and support positive human
interaction in urban spaces affected by UHI. Minor design
adjustments were shown to significantly influence environmental
performance and pedestrian experience. The framework
contributes to human-centered, climate-adaptive urban design,
offering a practical foundation for shaping thermally comfortable
and resilient public spaces under urban heat and microclimatic
variability.

2.3. Bibliometric analysis

A bibliometric analysis was conducted using data extracted from
Scopus and Google Scholar and visualized with VOSviewer to
identify key research trends at the intersection of urban
morphology, outdoor thermal comfort, and the UHI phenomenon.
Keyword co-occurrence analysis, based on titles, abstracts, and
author keywords, revealed four primary thematic clusters (Fig. 3).
The first cluster (red) centers on thermal and morphological terms
such as urban heat island and urban form. The second cluster
(blue) highlights spatial and structural aspects, including urban
morphology, urban canyon, and land use. The third cluster (green)
reflects the increasing role of nature-based solutions, represented
by terms such as green infrastructure, vegetation, and urban water.
The fourth cluster (yellow) emphasizes human-related
dimensions, including thermal perception, human behavior, and

psychological factors. Overall, the analysis demonstrates a
multidisciplinary trend toward integrating urban form, climate
responsiveness, and human experience. Computational modeling
tools such as ENVI-met, CFD, and GIS are increasingly applied
to assess urban microclimates. Nevertheless, significant gaps
remain in addressing thermal perception and behavioral aspects
within these models, underscoring the need for their stronger
integration into urban morphological and energy resilience
frameworks.

2.4. Global and temporal research trends

A global overview of the geographical distribution of studies on
the urban morphology and UHI phenomenon is shown Fig. 4(a).
Red circles indicate locations where research has focused on the
intersection of urban morphology and UHI. The size of each circle
corresponds to the number of publications, with larger circles
representing higher research output. The figure clearly shows that
the most studies are concentrated in developed countries. In
contrast, many rapidly urbanizing developing nations despite
being highly vulnerable to climate-related challenges have
produced fewer than 15 relevant publications. Temporal trends in
research output between 2015 and 2025 are illustrated Fig. 4(b),
showing a notable increase in publications from 2018 to 2022,
reflecting growing interest in the relationships among urban
morphology, outdoor thermal comfort, and UHI. However,
research growth remains uneven across regions. The top
publishing journals in this field are highlighted Fig. 4(c). The
majority of relevant studies appear in Building and Environment,
Sustainable Cities and Society, and Energy and Buildings,
identifying these outlets as leading contributors to
interdisciplinary research on urban form and climate
responsiveness. Overall, the analysis underscores both the
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Fig. 3. Keyword co-occurrence network showing four key research clusters in urban morphology, thermal comfort, and urban heat island studies.

geographic concentration of studies and the rising attention to
human—environment interactions within UHI and thermal comfort
research.

3. THEMATIC REVIEWS
3.1. Outdoor thermal comfort

Outdoor thermal comfort is a multidisciplinary field integrating
environmental, physiological, and psychological factors to assess
human thermal perception in outdoor environments Developed
from indoor comfort research, it now examines interactions
between meteorological variables and human responses [34]. Over
the past century, around 165 thermal comfort indices have been
introduced, from empirical models such as WBGT and WCI to
advanced methods including PMV, PET, and multi-node
thermoregulation models [15,35-37]. These developments reflect
a shift toward integrative, non-steady-state assessments suitable

for outdoor settings. Previous studies from 2015-2025 are
summarized in Table Al.

3.1.1. Categorizing outdoor thermal comfort indices

OTC indices are commonly classified into three groups: linear,
mechanistic, and empirical (Table Bl), each with distinct
theoretical and methodological bases. Linear indices consider only
environmental variables, such as air temperature, humidity, and
wind speed. While simple, they often oversimplify comfort by
excluding physiological and psychological responses [38,39].
Mechanistic indices, including the Universal Thermal Climate
Index (UTCI) and Physiologically Equivalent Temperature (PET),
use thermophysiological models to simulate heat exchange
between the human body and environment, accounting for
metabolic rate, clothing insulation, and radiant heat [40-42].
Despite scientific robustness, computational demands may limit
real-time application in fieldwork and urban design [43].
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research on urban morphology, outdoor thermal comfort, and UHI.

Empirical indices, derived from field surveys, relate subjective
thermal sensation to microclimatic measurements, providing local
insights but often constrained by cultural, regional, and
acclimatization biases [18,44-46]. Each category has limitations:
linear models neglect human adaptability, mechanistic models
lack socio-cultural sensitivity, and empirical models face
scalability challenges [47,48]. Future directions suggest hybrid
models combining mechanistic precision with empirical
contextualization, supported by cross-climate validation and
advances in biometric sensing and machine learning [49-52].

3.1.2. Frequency of outdoor thermal comfort indicators
The most frequently used OTC indices are PET, UTCI, PMV, and
SET (Fig. 5). Other commonly applied indices include Apparent
Temperature (AT), Discomfort Index (DI), Perceived
Temperature (PT), and Wet Bulb Globe Temperature (WBGT).
Indices cited only once were excluded from the analysis.

OTC is often assessed using PET and UTCIL, valued for
applicability across diverse climates. PET, derived from the
Munich Energy Balance Model for Individuals (MEMI),
integrates environmental and physiological variables and often
outperforms SET, PMV, and UTCI in dynamic outdoor conditions
[15,16,30,53]. UTCI, based on the multi-node UTCI-Fiala model,
offers high accuracy but is limited by reliance on European—
Russian datasets and fixed clothing assumptions [54]. PMV,
developed for stable indoor settings, shows lower accuracy
outdoors due to insensitivity to solar radiation and variable wind
[16,55]. Its adaptation, OUT-SET, improves radiation modeling

120

100
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WI“”l”“I
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(c),yllIl

but may overestimate physiological responses despite strong
correlations with thermal sensation votes [30,56]. WBGT, widely
applied for heat stress assessment, demonstrates reduced accuracy
in humid climates and often produces results comparable to UTCI
[35].

3.1.3. Research methodologies in OTC studies

OTC studies employ empirical methods, based on field
measurements, and numerical approaches using simulation
models. Choice depends on objectives, resources, and data
availability. Increasingly, integrated approaches combine real-
world accuracy with analytical depth, as illustrated in (Fig. 6),
enhancing the robustness and comprehensiveness of OTC
assessments.

3.1.3.1. Numerical and simulation-based approaches

Numerical methods in OTC research employ tools such as
computational fluid dynamics (CFD), ENVI-met, RayMan, and
Rhino, along with parametric platforms like Ladybug and
Dragonfly, integrated with EnergyPlus and OpenFOAM [57-61].
Geographic Information Systems (GIS) and sensing technologies
further enable localized, real-time assessments [62-65]. Advanced
predictive tools, including machine learning algorithms such as
support vector machines, random forests, and neural networks and
agent-based modeling are increasingly applied to forecast thermal
comfort in complex outdoor environments. These methods bridge
computational rigor with empirical validation, supporting robust
urban microclimate analysis and sustainable urban design [66-68].
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Fig. 5. Frequency of outdoor thermal comfort indicators.

3.1.3.2. Empirical methodologies

Empirical methodologies in OTC research integrate conventional
and advanced techniques to evaluate both environmental
conditions and human thermal responses. Environmental data are
obtained using weather stations, data loggers, and microclimate
sensors, measuring parameters such as air temperature, humidity,
wind speed, and solar radiation [17]. Urban morphology is
analyzed through fisheye lens photography, video documentation,
and geospatial tools, with hemispherical imagery frequently
employed to calculate the SVF and solar exposure patterns [69].
Subjective data are collected via spot measurements and thermal
satisfaction surveys based on ASHRAE Standard 55,
complemented by structured interviews and observational
approaches such as activity logs and posture tracking. For instance,
Peng (2019) applied path analysis to examine how age, BMI,
health status, and outdoor activity frequency influence thermal
perception, emphasizing individual variability [70]. Qualitative
methods, including photographic comparisons, enrich OTC
assessments by linking visual preferences to perceived comfort
[71]. Since the late 20th century, technological progress has
advanced Objective Physical Environment Measurement (OPEM),
replacing manual techniques with automated systems such as Data
Acquisition Systems (DAS) and GIS for high-resolution spatial
analysis [72,73]. Recent innovations, including Building
Information Modeling (BIM), the Internet of Things (IoT), and
Virtual Reality (VR), enable real-time data integration and
immersive visualization. For example, Shahin Moghadam et al.
(2021) developed an IoT-based BIM platform employing edge
computing to estimate MRT in alignment with PMV and PPD
indices [74]. Non-contact technologies, such as smartphone
thermal cameras and video-based motion detection, also support
mobile, behavior-sensitive OTC monitoring, though challenges
remain regarding outdoor measurement accuracy [64,75].

39.48%

u PET
m UTCI
PMV
SET- SET-OUT
m WBGT
W HI
mTSV
mET
mASV
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3.2. The impact of urban morphology and microclimate
interactions on outdoor human thermal comfort

Urban morphology (UM) the spatial arrangement of buildings and
open spaces significantly affects local microclimates and outdoor
thermal comfort (Fig. 2). Early research focused on two-
dimensional aspects like green cover and impervious surfaces
related to land surface temperature (LST), while recent studies
highlight three-dimensional factors such as building height,
density, and volume [23]. This section reviews macro- and micro-
scale literature to inform thermally responsive urban design.

3.2.1. Interaction between urban density, form

Global urbanization is projected to reach 68—70% by 2050, driving
denser city structures typically measured by Building Coverage
Ratio (BCR) and Floor Area Ratio (FAR) [23]. While density
improves infrastructure efficiency and reduces per capita energy
use, it also intensifies microclimatic extremes. Urban canyons and
impermeable surfaces amplify the UHI effect, elevating nighttime
temperatures by 2-5°C and diminishing OTC [9,28,76]. Tall
building clusters, as observed in cities such as Beijing and Toronto,
reduce daytime solar exposure but trap heat after sunset; in
contrast, low-density sprawl facilitates ventilation yet increases
daytime heat stress [23,77]. Field investigations and CFD
simulations reveal density-related temperature increases of up to
1°C and 2.5°C, respectively [78]. Vertical configurations
aggravate surface temperature gradients, while horizontal sprawl
restricts airflow. A large-scale study in southern China identified
urban density as the dominant predictor of thermal discomfort,
surpassing vegetation cover

and surface reflectivity [79].

Urban form also plays a decisive role in shaping thermal
conditions. Low SVF designs, such as mid-rise buildings with
narrow streets, enhance summer shading but obstruct winter
sunlight, whereas high SVF grids promote solar gain yet disrupt
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airflow, intensifying heat stress [78]. Seasonal trade-offs persist:
compact forms reduce summer PET but limit winter warmth,
while open forms yield opposite outcomes [80,81]. Beyond
physical form, human adaptation reflects both environmental and
sociocultural contexts. High density and steep thermal gradients
elevate psychological stress, requiring hybrid solutions such as
shaded courtyards and comfort-oriented urban design [82].
Cultural background and behavioral adaptability also shape
thermal perception. Populations in warmer climates, such as
Greece, often report lower heat sensitivity, whereas residents of
colder regions, such as Harbin, display higher TSV under similar
PET levels [83,84]. Temporary populations during heatwaves
exhibit elevated TSV, reflecting differences in thermal
expectations [85]. Evidence from Shanghai and Cairo further
demonstrates how migration and gender influence thermal
behavior, underscoring the need for culturally responsive design.
Achieving urban thermal resilience requires the integration of
ecological infrastructure, density-sensitive planning, and
sociocultural understanding [86,87].

3.2.2. Interaction between urban canyons, orientation

The geometry and orientation of urban canyons strongly shape
microclimates and OTC by regulating solar access, ventilation,
and UHI intensity. Core parameters H/W, SVF, and L/W control
solar penetration and heat retention within canyon spaces [10,88].
Among these, the interaction between H/W and orientation is
particularly critical. East—west canyons often record higher PET
due to prolonged solar exposure, while diagonal orientations (e.g.,
NW-SE, NE-SW) provide more balanced conditions through

improved shading and solar modulation [89,90]. In hot climates,
high H/W ratios (> 2.0) lower SVF and PET, enhancing summer
comfort, as reported in Agadir and Fez [81]. However, excessive
shading combined with limited ventilation may reduce comfort in
colder or humid climates. Cultural and climatic contexts further
influence perception; for example, residents in Phoenix and
Marrakech display distinct responses to heat stress [91].

3.2.3. Interactions between urban materials and urban
heat islands

UHI intensity is influenced by land use, vegetation cover, and
material properties, such as albedo, emissivity, and thermal
conductivity, which affect OTC and urban energy demand at
multiple scales [32,92]. Surface albedo and the SRI are critical for
UHI mitigation. High-SRI, light-colored materials reduce surface
temperatures, improve pedestrian comfort, and lower building
energy consumption [93]. Their effectiveness depends on urban
form; wide street canyons typically show air temperature
reductions, whereas narrow canyons may experience increased
Tmrt from reflected radiation [94]. Combining reflective surfaces
with shading elements, such as street trees, optimizes air and
radiant temperatures, enhancing UTCI [95]. Thermal emissivity
mitigates UHI by allowing surfaces to radiate stored heat [96].
Cooling strategies prioritize surface reflectivity, urban geometry,
and materials with appropriate thermal properties. Pavement color
and texture influence surface temperatures, with light, smooth
surfaces lowering ST by up to 5°C [97,98]. Thermal conductivity
and heat capacity govern heat transfer; high heat capacity suits
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ventilated canyons, while low conductivity benefits dense urban
areas [20].

3.2.4. Interactions between urban green and outdoor
thermal comfort

Urban green infrastructure including forests, street trees, gardens,
wetlands, green roofs, and green walls significantly mitigates UHI
effects and enhances OTC [99]. Vegetation improves
microclimates by providing shade, promoting evapotranspiration,
and facilitating airflow. In the U.S., shade trees reduce surface
temperatures by approximately 3.1 °C, while dense tree planting
in Riyadh lowers PET by up to 16.9 °C, outperforming green walls
[100-103]. Seasonal and contextual factors strongly influence
effectiveness. In Changchun, summer LST decreased by 1.27 °C,
with vegetation density (NDVI) affecting thermal conditions more
than patch size or fragmentation [104]. In Chengdu, tree cover
enhanced summer comfort, whereas open lawns were preferred in
winter [22]. In Xi’an, winter thermal sensation was driven
primarily by solar radiation, followed by air temperature and
humidity, with residents favoring sunlit areas, emphasizing the
need for seasonally adaptive, climate-sensitive urban design [105].
Time of day strongly influences the cooling effect of urban
vegetation. In Cairo, increasing canopy cover to 35-50% reduced
PET by over 5 °C during peak afternoon hours, while efficient
irrigation decreased water use by 85% [101]. Tree placement near
tall buildings, as observed in Prague, reduced cooling by 1°C
[103]. Mixed tree species, including Acer, Ulmus, and Pinus in
Tabriz, lowered PMV to 2.39 [106]. In Xi’an, Ginkgo biloba
significantly reduced UTCI, and aesthetic characteristics affected

perceived warmth by up to 2°C [107]. Seasonal performance
varies with species composition; mixed deciduous-evergreen
canopies were most effective in tropical and temperate zones,
whereas evergreens performed best in arid climates [104,108-110].
At the building scale, green roofs reduce energy loads but provide
limited pedestrian benefits, whereas green walls lower Tmrt by up
to 5 °C and reduce pollutants, enhancing street-level comfort [105].
Thermal comfort is both physical and perceptual: in Nuevo
Bosque Park, Colombia, 90.91% of visitors reported comfort
under tree cover despite a THI of 55°C, while 69.69%
experienced discomfort in open area [111]. Physiological studies
confirm brief exposure to greenery lowers heart rate, increases
parasympathetic activity, and enhances emotional well-being
[112].

3.2.5. Interactions between urban water bodies and
urban heat island mitigation

Urban water bodies (UWBs) including lakes, rivers, ponds, and
wetlands significantly mitigate UHI effects and improve thermal
comfort through thermal inertia and evaporative cooling (Fig. 7).
By absorbing solar radiation and releasing moisture, UWBs can
lower nearby air temperatures by up to 3 °C during peak heat
[113,114]. Cooling effects vary by climate: tropical regions
experience year-round moderation but limited evaporation due to
high humidity; Mediterranean climates benefit most during hot
summers; arid regions experience both daytime and nighttime
cooling due to low humidity. Diurnal cooling ranges from 3-5 °C,
with minor nighttime warming of 1-2 °C, while seasonal cooling
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peaks in late spring and summer, dropping by 0.5-2 °C in winter
[114,115]. Cooling efficiency depends on size, depth, shape, and
location. Larger, deeper water bodies retain cooling longer, and
alignment with prevailing winds enhances airflow. Urban density
and surface roughness limit UWB influence to 100-50 [116], with
optimal relief occurring 10-20 m from edges. While UWBs have
limited effect on mean radiant temperature, combining them with
vegetation and permeable surfaces increases effectiveness [113].
Modern mist systems reduce temperatures by 2—3 °C, improving
PET during heatwaves [115-117]. Traditional designs, such as
Iranian gardens, also enhance comfort. Urban blue spaces are
increasingly recognized for their thermal and health benefits
[81,118].

3.2.6. Building-scale morphology and fagade strategies
for outdoor thermal comfort
Building height, spacing, and orientation significantly influence

OTC by shaping radiative and convective exchanges at street level.

ENVI-met simulations in Toronto indicate that clustering high-
rise towers enhances airflow and reduces air temperature,

lowering MRT and mitigating UHI effects in cooler climates [119].

In Tabriz, characterized by cold winters and hot summers,
combined ENVI-met and RayMan analyses show that a specific
H/W ratio and street orientation optimally balance solar access
and shading, improving PET throughout the year [120]. Fagade
geometry including canopies, podiums, and permeable floors can
be designed to improve wind conditions at street level [121].
Canopies reduce wind intensity around pedestrian areas, podiums
lower wind speeds near buildings, and mid-tower permeable floors
contribute to airflow control. Poorly positioned ground-level
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openings, however, may increase local wind exposure. Strategic
facade design is critical for enhancing pedestrian comfort and
creating favorable microclimates [122-127]. Large-eddy
simulations demonstrate that windward-facing balconies may
block canyon airflow, reduce wind speeds, increase pollutant
concentrations, and raise sidewalk exposure, impairing convective
cooling and worsening localized UHI [24]. ENVI-met simulations
in Mediterranean climates show that green facades and roofs
reduce air temperature and UTCI, particularly in courtyard designs
[25]. Reflective glass and metal fagades increase heat absorption
and re-radiation in tropical areas, exacerbating pedestrian thermal
stress [128,129]. Advanced materials, such as phase change
materials, cool coatings, and glass-ceramics, further reduce UHI,
highlighting the importance of climate-responsive fagades
[130,131]. External shading devices including overhangs, louvers,
and canopies effectively reduce solar gain and lower MRT.
Passive shading in Southern China decreases PET and UTCI
during summer [132] (Fig. 8).
3.3. Human-environment interactions and outdoor
thermal comfort

This section introduces a holistic framework for OTC using GMA.
It considers OTC as a multidimensional outcome influenced by
direct factors physical, physiological, and psychological and
indirect factors such as behavioral, personal, social, cultural, and
alliesthesia contexts (Fig. 9). The framework guides climate-
sensitive urban design to enhance comfort in diverse outdoor
environments.
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Fig. 9. Human—environment interactions and outdoor thermal comfort.

3.3.1. Direct influences

3.3.1.1. Physical factors

OTC results from the complex interaction of environmental
factors air temperature, solar radiation, wind, and humidity that
influence the body’s heat exchange through conduction,
convection, radiation, and evaporation. Air temperature is the
most influential factor. A year-long study in Harbin, China,
confirmed temperature as the primary driver of thermal perception,
shaped by seasonal behavior and clothing adaptations [39].
Cognitive and behavioral factors also affect thermal sensation; Liu
et al. reported discrepancies between expected and actual thermal
experiences [70]. In Guilin’s hot-summer, cold-winter climate,
children exhibited heightened thermal sensitivity, with a neutral
temperature near 15°C and a comfort range of 5-26°C,
emphasizing the importance of passive strategies such as shading,
high-albedo materials, and cross-ventilation [133]. Solar radiation
and wind substantially modify thermal comfort: sun exposure
improves comfort in cool conditions but increases MRT in hot
climates, while wind enhances convective cooling, particularly in
warm, breezy environments [134]. Humidity significantly affects
comfort in hot-humid regions, such as Singapore [135].

3.3.1.2. Physiological factors

Physiological responses including sweating, vasodilation, and
cardiovascular regulation are essential for thermal balance
outdoors. Key indicators such as skin temperature, core
temperature, sweat rate, and heart rate variability measure thermal
strain. Skin temperature, around 32.7 °C in neutral conditions, is

highly sensitive to environmental changes. Solar radiation, wind,
and clothing influence regional skin temperature variations,
sometimes exceeding core temperature effects [136,137].
Transient heat transfer models estimate mean skin temperature,
but local deviations can reach 15 K in extreme cold [52]. Machine
learning methods, including Support Vector Machines, accurately
predict thermal states from localized skin temperature and thermal
load [138]. Urban morphology, via SVF, affects physiological
responses. Sweat rate varies by sex, fitness, and humidity, with
high humidity reducing evaporative cooling and increasing
thermal strain [127,139].

3.3.1.3. Psychological factor

Psychological factors critically influence outdoor thermal comfort,
encompassing subjective aspects such as prior experience,
individual expectations, and perceived control, beyond
physiological responses. ASHRAE (2017) defines thermal
comfort as a “condition of mind expressing satisfaction with the
thermal environment,” emphasizing mental and emotional
dimensions amid variable outdoor conditions affected by solar
radiation, wind, and humidity [12]. Adaptation and experience
shape thermal neutrality and preference. In Nepal, residents
tolerated higher temperatures than recent migrants, reflecting
behavioral and physiological acclimatization to subtropical
climates [140]. European studies indicated that neutral PET
increased with annual mean temperature, demonstrating climate-
responsive adaptation [141]. A large survey in Szeged, Hungary,
revealed notable seasonal variations in neutral PET, highlighting
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the importance of regional and seasonal factors in thermal comfort
models [142]. Expectations influence perception; indoor
conditions, time of day, and environmental context affect comfort
independently of outdoor climate [143]. Anticipated shade, wind,
or leisure settings enhance comfort, as shown in Hong Kong [144]
and the Caribbean [145]. Additionally, greenery, shading, and
perceived control significantly improve well-being and emotional
adaptation [146,174].

3.3.2. Indirect influences

3.3.2.1. Behavioral factors: clothing and activities
Behavioral responses including clothing choices and activity
patterns  significantly influence outdoor thermal comfort,
reflecting complex interactions between environmental conditions
and socio-cultural norms. In urban environments, user attendance
strongly correlates with microclimatic factors such as air
temperature, solar radiation, wind, and humidity. A study in
Taichung City, Taiwan, reported peak attendance at moderate PET
ranges, with over 75% of users preferring shaded areas, engaging
primarily in passive activities, and prolonging their stay,
emphasizing psychological aversion to direct sunlight and the
critical role of shade and tree canopy in warm-climate urban
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design [38,148]. Clothing insulation regulates heat exchange and
strongly affects thermal perception. A survey of 563 tourists in
Porto showed that both clothing and activity levels significantly
influenced comfort, with clothing insulation highly correlated with
air temperature. Seasonal and demographic variations were
observed: women wore lighter clothing in summer, while older
adults preferred higher insulation in winter. In culturally
conservative settings, such as Tehran, clothing flexibility is
constrained. Observed behaviors including sun avoidance,
activity-driven thermal tolerance, gender-based solar sensitivity,
and adaptive strategies in hot-arid climates underscore the
complex and adaptive nature of thermal comfort responses
[39,149-152].

3.3.2.2. Personal factors

Gender significantly affects outdoor thermal perception across
climates. Women often report thermal neutrality at higher PET
values and demonstrate greater sensitivity to environmental
fluctuations than men [151]. In Harbin, females preferred warmer
conditions and recorded lower Mean Thermal Sensation Votes at
equivalent UTCI levels [153]. In Al Ain, men tolerated higher heat,
while women sought shade and reported greater discomfort,
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emphasizing the need for gender-responsive design [152].
Generally, females exhibit lower tolerance to cold and wind,
whereas males prefer stronger airflow in hot, stagnant settings,
though differences diminish with increased air velocity.
ASHRAE-55 has been criticized for overestimating airflow’s
cooling effect, especially in mixed-gender contexts [154].
Simulations indicate females experience higher PET and greater
thermal sensitivity, reinforcing the importance of gender-informed
urban planning [155]. In Xi’an, girls showed greater heat
resistance during light activity, whereas boys tolerated intense
exertion more effectively [156]. Cross-climate studies further
reveal females’ higher susceptibility to cold and reduced thermal
neutrality, with younger individuals reporting greater discomfort
than older adults [157]. Age also influences thermal comfort
through physiological and behavioral mechanisms. In Prague,
middle-aged adults reported the highest comfort during hot
summers, whereas younger and older groups felt less comfortable;
the elderly often experienced discomfort even in cooler conditions
due to reduced metabolism and adaptability [158]. Older adults in
northeastern China displayed narrower, lower UTCI neutrality
ranges, indicating cold sensitivity but greater heat tolerance [159].
However, a year-long study in Kitakyushu found no significant
age—comfort relationship [29,160]. Body characteristics such as
skin color, body weight, and composition affect thermal comfort.
In Mexico, brown-skinned women exhibited higher BMI and
obesity rates than white-skinned women, a gender-specific
association not observed in men [161]. Among young male
students, fitness and body fat percentage influenced comfort under
neutral-cool conditions [162]. Integrating BMI, exercise habits,
tissue thickness, and skin temperature shows that greater fat or
muscle mass shifts thermal preference toward cooler
environments, with muscle mass enhancing cold tolerance [163].

3.3.2.3. Social & cultural factors

Social characteristics significantly influence OTC by shaping
perception and adaptive behaviors. In cold-climate regions of
China, occupational roles and daily routines markedly affected
thermal perception, demonstrating the role of social identity in
mediating environmental experience [164]. In Lebanon, social
behaviors, cultural norms, and spatial usage patterns strongly
impacted perceived comfort, emphasizing the importance of urban
design that reflects local social dynamics [165]. In Mexico, higher
obesity rates among brown-skinned women compared to white-
skinned women were linked to structural inequalities, such as
limited education, discrimination, and reduced access to
neighborhood services, which also affect comfort and well-being
[161]. Cultural background further shapes OTC by influencing
thermal preferences, adaptive behaviors, clothing choices, and
environmental attitudes. Traditional dress codes in Marrakech and
Phoenix altered clothing insulation and behavioral adaptation [91],
while tourists’ cultural origins in Porto affected both comfort
perception and attire selection [150]. Collectively, these findings
highlight the need for socially and culturally sensitive urban
climate strategies that integrate occupation, daily routines, local

practices, and cultural norms to enhance outdoor thermal comfort
inclusively and effectively.

3.3.2.4. Site

Site specific factors critically shape OTC by altering local
microclimates through material selection and urban form. In
Hangzhou, China, high-albedo surfaces in children’s play areas
increased thermal discomfort during peak sunlight, highlighting
the need for adequate shading [50]. In hot climates, pavement
albedo affected air temperature and UTCI more than building
fagades [166]. In Harbin, open campus spaces with diverse
landscape elements promoted winter outdoor activity, showing
how thoughtful spatial design can reduce cold stress [167].
Conversely, simulations at Tehran’s Mehr-Abad Airport indicated
that tree cover improved summer comfort by lowering PET but
also blocked beneficial solar gain in winter, reducing comfort
[21]. These findings highlight the importance of seasonally
adaptive, site-specific design balancing shading, material choice,
and vegetation to optimize OTC year-round.

3.3.2.5. Alliesthesia

Recent research on alliesthesia has clarified how dynamic thermal
environments shape OTC through interconnected temporal,
seasonal, microclimatic, and neurophysiological processes. Field
research in Sydney identified four categories of thermal
experience strong (Hot/Cold) and moderate (Warm/Cool) and
demonstrated that thermal pleasure increases as conditions
approach neutrality and decreases when they deviate from it.
Seasonal adaptation was evident through preferences for cooler
conditions in summer and warmer conditions in winter, illustrating
temporal alliesthesia [168]. Experimental studies using the
humidity-inclusive Adaptive Thermal Comfort model (ATCRH)
emphasized the interaction between humidity and airflow. Low
humidity produced comfort across all airspeeds, whereas high
humidity required higher airflow to maintain satisfaction.
Perceptual differences were also influenced by culture: British
participants described humid heat as sauna-like, while Indian
participants perceived it as heavy and oppressive [169]. Seasonal
alliesthesia also revealed that individuals preferred slightly warm
conditions in cool seasons and slightly cool ones in warm seasons,
reinforcing the need for seasonally adaptive outdoor design [170].
Seasonal alliesthesia indicated preferences for slightly warm
conditions during cold periods and slightly cool conditions during
warm ones, reinforcing the importance of seasonally adaptive
design [155]. Field-based thermal walks in Phoenix revealed that
microclimatic features such as shading and lower sky view factor
enhanced thermal pleasure. The PET, which integrates
temperature, humidity, radiation, and wind speed, effectively
captured  variations in  perceived  comfort  [171].
Neurophysiological investigations confirmed the biological
foundation of alliesthesia, as thermoreceptor-based models
combined with machine-learning algorithms accurately identified
pleasant and unpleasant states. These findings emphasize that
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outdoor spaces should be designed to promote sensory delight
rather than mere thermal neutrality [172].

4. DISCUSSION

This research aimed to unpack the complex relationship between
urban morphology and OTC, with a particular focus on addressing
the challenges posed by UHI effects in dense cityscapes. A
systematic literature review, guided by the PRISMA framework,
synthesized a wide array of empirical studies, modeling
approaches, and theoretical insights from across climate-sensitive
urban design literature. Analytical methods, including GMA and
CCA were employed to translate this body of knowledge into a
structured design logic. These methods facilitated the
identification of key parameters, interactions, and constraints that
shape OTC outcomes in complex urban environments.

4.1. Development of the design tool

The principal outcome of this study is the Design Tool. This five-
layered framework helps urban designers and planners assess and
optimize the thermal impacts of morphological and material
decisions. It integrates urban form, environmental modifiers,
thermal comfort indices, and human adaptive responses,
functioning as both an analytical tool and an early-stage decision-
support system. As illustrated in (Fig. 10), its hierarchical structure
and feedback loops connect design, climate, and user experience.
Adaptable to diverse climatic, cultural, and demographic contexts,
the tool supports evidence-based, climate-responsive design by
demonstrating how spatial choices shape environmental
conditions and ultimately influence human thermal comfort.

4.1.1. Urban morphological parameters

The first layer comprises the fundamental spatial and material
determinants of the urban microclimate, including urban form,
density, canyon geometry (e.g., H/W, SVF), surface material
properties (e.g., albedo, thermal mass), and green-blue
infrastructure. These parameters collectively influence solar
exposure, wind patterns, air temperature, humidity, and radiative
exchange—ultimately shaping the pedestrian thermal experience.
For example, narrow, high-density urban canyons with low SVF
provide shade in hot climates but may restrict ventilation. in
contrast, more open forms enhance airflow and solar access, which
is beneficial in colder regions. Street orientation also plays a
crucial role: east-west-oriented streets tend to accumulate heat in
the afternoon, while diagonal layouts distribute solar gains more
evenly throughout the day. Surface material characteristics further
impact thermal conditions; high-albedo materials can reduce heat
absorption but may increase MRT if not adequately shaded.
Vegetation offers evaporative cooling and psychological benefits,
while water features can help mitigate heat but may also increase
humidity, especially in already humid climates. Therefore, these
strategies must be contextually adapted and aligned with user
behavior and prevailing environmental conditions to ensure their
effectiveness.

4.1.2. Environmental modifiers and microclimatic
strategies

The second layer focuses on refining microclimatic conditions
through strategic material and landscape interventions that
modulate four key environmental variables: air temperature, wind
speed, humidity, and solar radiation. Air temperature is influenced
by factors such as thermal mass, shading, and surface albedo; wind
dynamics are shaped by building configuration, orientation, and
vegetation density; humidity is moderated by vegetation, water
features, and permeable surfaces; and solar radiation is governed
by orientation, canyon geometry, and SVF. High-albedo surfaces
reflect shortwave radiation and reduce surface heating, though
they may elevate MRT if not sufficiently shaded. Vegetation
contributes to microclimatic regulation through evapotranspirative
cooling and also offers psychological benefits. Similarly, water
features can provide localized cooling but may increase humidity
levels, particularly in already humid environments. The design
rationale emphasizes climate- and site-specific strategies that are
responsive to temporal dynamics, including diurnal and seasonal
variations as well as patterns of human activity. Accounting for
these temporal factors is essential to ensure that microclimatic
interventions align with actual exposure scenarios and user
behavior.

4.1.3. Thermal comfort indices

The third layer functions as an interpretive bridge between
environmental conditions and human thermal perception by
incorporating a range of thermal comfort indices. Mechanistic
indices—such as PET, UTCI, and PMV-—simulate thermo-
physiological responses under standardized assumptions,
providing reliable benchmarks for evaluating thermal
performance. However, these models may not fully capture the
variability of microclimatic conditions or the dynamic nature of
human responses. Empirical and hybrid indices address these
limitations by integrating subjective comfort feedback, behavioral
adaptations, and cultural expectations. Such approaches enhance
contextual relevance and inclusivity by accounting for local
climatic conditions and population-specific  sensitivities.
Incorporating demographic variables and aligning with
established standards, such as ASHRAE 55 and ISO 7730, further
improves the precision of comfort assessments. Recent advances
in machine learning and real-time environmental sensing enable
dynamic comfort modeling by linking sensor data with user
feedback, offering predictive and adaptive insights for responsive
urban design. By combining quantitative and qualitative
assessments, this layer ensures that thermal comfort evaluations
are both scientifically grounded and human-centered.

4.1.4. Human factors and behavioral adaptation

The fourth and fifth layers of the design tool underscore the critical
role of human variability and adaptive behavior in shaping outdoor
thermal comfort, moving beyond the simplified standardized
occupant model assumptions commonly embedded in
conventional frameworks. These layers incorporate a wide
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spectrum of factors: physiological characteristics such as age,
gender, metabolic rate, and body composition influence thermal
tolerance and sensitivity, with vulnerable populations such as the
elderly and women often exhibiting heightened susceptibility to
heat and cold extremes. Behavioral adaptations including clothing
insulation, activity levels, shade-seeking behavior, and timing of
outdoor exposure significantly affect thermal perception and
comfort outcomes. Socio-cultural dimensions, such as regional
dress codes, lifestyle patterns, and cultural expectations, further
mediate adaptive responses, as illustrated by diverse practices
ranging from Mediterranean siestas to attire norms in desert cities.
Psychological factors, including alliesthesia and thermal history,
reveal that thermal comfort is not static but is dynamically shaped
by prior thermal experiences and emotional states. By integrating
demographic profiling, real-time environmental sensing, and
behavioral mapping, the tool enables context-sensitive and
inclusive design strategies. This comprehensive, human-centered
framework is essential for promoting equitable thermal comfort
and enhancing urban resilience in the face of escalating heat stress
and increasing climatic, cultural, and demographic diversity.

5. CONCLUSION

Urban morphology plays a pivotal role in shaping pedestrian
thermal comfort in wurban environments by influencing
microclimatic conditions such as solar exposure, ventilation,
humidity, and radiant heat exchange. Key morphological
parameters including urban density, canyon geometry, street
orientation, surface materials, vegetation, and water features
determine how pedestrians experience outdoor conditions. These
features interact dynamically with environmental modifiers,
human adaptive behaviors, and the localized effects of the urban
heat island, producing thermal comfort outcomes that are highly
context-dependent. Physiological characteristics, behavioral
adaptations, and socio-cultural or psychological factors further
influence individual perception of comfort. Consequently,
pedestrian  outdoor thermal comfort emerges as a
multidimensional, context-sensitive phenomenon arising from the
complex interplay between urban morphology, human interaction
with urban morphology, and the influence of the urban heat island.
Addressing this complexity, the study developed a five-layered
parametric design tool that integrates urban morphology,
microclimatic strategies, thermal comfort indices, and human
adaptive behavior into a single, unified framework. Analytical
methods, including General Morphological Analysis and
Constraint Cross-Analysis, translate theoretical insights into
practical design logic, allowing systematic exploration of urban
form variations. The tool enables simulation of alternative
configurations, prediction of microclimatic impacts, and
evaluation of pedestrian comfort outcomes across diverse climatic
and cultural contexts. By bridging urban morphology with human-
centered considerations, the parametric design tool provides a
decision-support system for climate-responsive, evidence-based,
and inclusive urban design strategies.

This integrated approach demonstrates that optimizing pedestrian
thermal comfort requires both an understanding of morphological
influences and the ability to translate these insights into actionable
urban design interventions. The relationship between urban form,
human behavior, and environmental conditions underscores the
value of parametric tools for creating adaptive, resilient, and
socially inclusive urban environments that respond effectively to
the challenges posed by the urban heat island.

5.1. Limitations

Several limitations should be acknowledged when interpreting the
findings. The systematic review relied on selected peer-reviewed
sources published in specific languages, potentially excluding
regional studies or non-English research addressing local climatic
and cultural conditions. The proposed Design Tools framework,
though comprehensive, simplifies the multiscale and context-
dependent interactions among urban morphology, microclimatic
parameters, thermal indices, and human adaptive responses.
Existing comfort models such as PET, PMV, and UTCI assume
steady-state conditions, which may not capture transient or
subjective outdoor thermal perception. Microclimatic variations
from vegetation, water bodies, and materials are dynamic and may
not be fully represented. Empirical validation and predictive
capacity under future climatic or socio-technological changes
remain uncertain, highlighting the need for longitudinal, cross-
cultural, and multi-scale studies.

5.2. Future research directions

Future research should prioritize empirical testing and refinement
of the parametric design tool in diverse climatic, urban, and socio-
cultural contexts. Longitudinal field studies incorporating real-
time microclimatic measurements and participatory pedestrian
feedback will enhance predictive capacity. Expanding data
sources to underrepresented regions and integrating non-
traditional knowledge can further illuminate urban morphology—
comfort interactions. Advances in computational modeling, GIS-
based visualization, mobile platforms, and machine learning offer
opportunities to improve precision, scalability, and interactivity,
ultimately supporting the design of inclusive, equitable, and
thermally comfortable urban environments.

APPENDIX A

Summarizes key previous studies conducted between 2015 and 2025,
highlighting major findings and methodologies related to outdoor
thermal comfort (Table A1).
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APPENDIX B

Classifies outdoor thermal comfort indices into three categories: Linear (environmental variables), Mechanistic (physiological and
environmental factors), and Empirical (subjective or objective assessments (Table B1).

Table B1. Categorizing outdoor thermal comfort indices.

Category Index Name Abbreviation Key Variables Unit References
Apparent Temperature AT Ta, WS °C [39,47]
%‘ Discomfort Index DI Ta, RH °C [47]
é Environmental Stress Index ESI Ta, RH, SR °C [173]
T‘I‘; Effective Temperature ET Ta, RH, WS °C [174,175]
g Humidex H Ta, RH °C [173]
=
‘g Heat Index HI Ta, RH °C [48]
é Relative Strain Index RSI Metabolic rate, clothing - [175]
b Wet-Bulb Globe Temperature Index WBGT Tg, Tw, Ta [35]
]
£ Wind Chill Index WCI Ta, WS °C [37]
-
Wind Chill Temperature WCT Ta, WS °C [176]
COMfort Formula COMFA Ta, RH, WS, activity level W-m=2 [77]
Universal Effective Temperature ETU Ta, RH, WS, M °C [178]
Heat Load Index HL Ta, RH, WS W-m2 [179]
Outdoor Human Thermal Comfort Index HTCI Ta, RH, WS W-m™ [26]
Index of Thermal Stress ITS Ta, RH, WS W [43]
Predicted Heat Strain PHS Ta, RH, WS - [180]
Modified Physiological Equivalent Temp mPET Ta, RH, WS, M, Icl, Tmrt °C [42]
Standard Effective Temperature (Outdoor) OUT_SET* Ta, RH, WS, M, Icl, Tmrt °C [30,43]
a Predicted Mean Vote PMV Ta, RH, WS, M, Icl — [15,36]
'E,, Physiological Equivalent Temperature PET Ta, RH, WS, M, Icl, Tmrt °C [40]
-(—% Perceived Temperature PT Ta, RH, WS, Tmrt °C [181]
-§ -=: Standard Effective Temperature SET* Ta, RH, WS, M, Icl °C [53]
E % Subjective Temperature Index STI Ta, RH, WS - [179]
=
éa é Universal Thermal Climate Index UTCI Ta, RH, WS, M, Icl, Tmrt °C [40,182]
e Required Clothing Insulation IREQ Ta, WS, M m>K-W! [183]
= e o Thermal Sensation Vote TSV Subjective survey responses - [44]
E‘ = g E ‘:? Actual Sensation Vote ASV TSV + microclimate data - [18]
=228 350
° Tropical Summer Index TSI Ta, RH (empirically derived) °C [46]
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