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Abstract 
Direct horizontal illuminance along a calculation row due to two parallel arrays of large numbers of identical light sources behaves like 
a periodic signal with a sinusoidal pattern, which contains useful information for design purpose. This study aims to describe, verify, 
and discuss the theoretical concept on the superposition of direct horizontal illuminance from both arrays in such configurations, and 
how to extract the information using the phasor method. Four different approaches are proposed to estimate the total direct horizontal 
illuminance ET(x) and to verify the concept. Sensitivity analysis is also conducted to observe the influence of each input variable to the 
resulting ET(x) pattern. The differences between obtained values using the four approaches are found very small, so that the proposed 
concept is verified. Based on the sensitivity analysis, the luminous intensity distribution of the sources significantly affects the 
illuminance fluctuation; whereas the impact of lateral position of the calculation row and the spatial phase difference are inconsistent. 
Overall, the advantage of using phasor method has been demonstrated for this purpose, which is expected to help in understanding the 
superposition phenomenon of sinusoidal pattern of illuminance, and in achieving the desired spatial contrast. 

© 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction
Calculation of illuminance on the workplane or reference plane is 
one of the most important tasks to perform in lighting engineering 
and design. Starting from the prominent work of Lambert in the 
18th century [1], most of the procedures for illuminance calculation 
have been well-established in the last century [2,3] and thus have 
become standard knowledge for lighting engineers and designers. 

The advance of computational lighting modelling and 
simulation in the past decade [4-6] also greatly reduces the need 
for manually performing routine illuminance calculation, and so 
contributes in providing better and more accurate design 
recommendations. Nevertheless, it is important for any lighting 
engineers and designers to understand the underlying principles 
used in the calculation processes, to minimise the risk of having 
unreliable results [7]. The knowledge of the underlying principles 
shall enable engineers or designers to write their own (computer) 
programs or algorithms whenever necessary; and would be a 
valuable material for education purpose [7-9]. 

Despite seeming to be well-understood, one of the topics that 
tends to be overlooked is the the horizontal illuminance (EP) 
calculation due to parallel arrays of identical light sources 
mounted at an equidistant interval, forming a periodic spatial 
pattern. An example would be the configuration of pendant 
luminaires in a library (Fig. 1), which consists of two parallel rows 
(or arrays) of luminaires. Since the mounting height and the 
distance between adjacent luminaires at the same array are 
typically constant, the direct EP values at a given calculation row 
parallel to the arrays also follows a periodic spatial pattern. For 
typical interior luminaires, the periodic pattern is expected to be a 
sinusoidal one, provided the number of luminaires in each array is 
large enough. 

The direct EP along the calculation row due to a single array of 
luminaires therefore behaves like a periodic signal, stationary in 
time (assuming the sources are constantly turned on) but varying 
in one-dimensional space of interest. Combining both arrays of 
luminaires together shall yield another sinusoidal pattern, which is 
basically the superposition of two sinusoidal signals. The pattern 
contains several important information, such as the values and 
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positions of maximum and minimum illuminances along the 
calculation row, which can be useful for design purpose. 
The example can be also extended, for instance, in the lighting 
arrangement above the audience seats in theatres. To a certain 
extent, one can also think on arrays of windows or clerestories on 
both long sides of a corridor under the CIE overcast sky. All those 
scenarios shall reveal a sinusoidal pattern of EP along a calculation 
row parallel to the sources. When the calculation row is located 
for instance on a diffuse floor, the resulting illuminance pattern 
may also be correlated with luminance difference and spatial 
contrast, which is considered an integral part of the architectural 
features of the space [10,11]. Spatial contrast is found to be an 
important factor in indoor (e.g. [11-15]) and outdoor spaces (e.g. 
[16-19]). In a typical indoor office setting, for instance, it is known 
that luminance diversity and non-uniform lighting distribution 
may be positively correlated with and the occupants’ impression 
of excitement and preference [20,21], although a space with too 
excessive luminous variability may be perceived as uncomfortable 
[22].  

The concept of spatial brightness and perceived adequacy of 
illumination (PAI) in lighting design has also been promoted in 
the past decade [12,23,24]. The existence of spatial patterns is also 
typically indicated with luminance contrast, in the case of indoor 
spaces [11,14]; and mean, minimum, and maximum illuminances 
in the case of outdoor spaces (or any space with relatively low 
reflections from the environment), particularly streets or roads 
[17-19].  

The information contained in the sinusoidal pattern is however 
seldom discussed in literatures and standards. This study therefore 
aims to describe and discuss the theoretical concept on the 
superposition of direct EP from both sources’ arrays in such 
configurations, and to verify it with some worked examples. The 
article is structured as follows: Section 2 provides the theoretical 
concept of the relevant calculations for obtaining the direct EP due 
to two parallel, periodic arrays of identical sources. Section 3 
describes the methods applied in verifying the proposed concept, 
followed with sensitivity analysis on the input variables. Sections 

Nomenclature 
BZ British zonal 
EP Horizontal illuminance on a point [lx] 
E(x) Horizontal illuminance along the calculation row 

[lx] 
Emed(x) Median horizontal illuminance along the 

calculation row [lx] 
Emin(x) Minimum horizontal illuminance along the 

calculation row [lx] 
Emax(x) Maximum horizontal illuminance along the 

calculation row [lx] 
I0 Maximum luminous intensity of the source, at γ = 0 

[cd] 
k Wavenumber [m–1] 
LID Luminous intensity distribution 
n Power coefficient in the cosine-like LID model 
x Longitudinal position along the calculation row [m] 
y Lateral position of the second array with respect to 

the first array [m] 
yP Lateral position of the calculation row with respect 

to the first array [m] 
γ Zenith angle of luminous intensity, relative to the 

source’s normal [rad] 
z Mounting height of the source [m] 
β’ Standardised regression coefficient [-] 
ΔE Horizontal illuminance fluctuation [lx] 
δ Spatial phase difference, longitudinal distance 

between arrays [m] 
ϕ Angular phase difference [rad] 
ξ(x) Complex notation of horizontal illuminance along 

the calculation row [lx] 
λ Spatial wavelength, distance between adjacent 

sources [m] 

 
Fig. 1. Illustration of two parallel arrays of luminaires (highlighted in yellow) with a periodic pattern. (adapted from public domain image: Main Reading Room of the 
New York City Public Library on 5th Avenue, ca. 1910–1920). 
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4 and 5 provides the results and discussion, whereas Section 6 
concludes the article. 

 
2. Concept 
Consider an array comprising a large number of identical light 
sources, i.e. those with identical luminous flux and luminous 
intensity distribution (LID), mounted at a constant height z above 
the reference plane. The LID of the sources is assumed to be 
cosine-like, i.e. closely follows that of BZ1 or up to BZ5 type in 
the British Zonal (BZ) classification system [25,28]. Adjacent 
sources are separated by a constant distance λ, as illustrated in 
Figs. 2(a), 3(a), and 4(a). Suppose there exists a row of calculation 
points, parallel with the sources array at a lateral distance y. 

The direct EP values on the calculation points are expected to 
vary according to a sinusoidal pattern, as illustrated in Fig. 5. One 

can thus observe the maximum, median, and minimum EP values 
(Emax, Emed, Emin) along the calculation row. Since the LID of the 
sources is assumed to follow BZ1 or up to BZ5 type, the source’s 
luminous intensity at any zenith angle γ reads: 

𝐼𝐼𝛾𝛾 = �𝐼𝐼0 cos𝑛𝑛 𝛾𝛾 ,  0 ≤ 𝛾𝛾 ≤ 𝜋𝜋/2
0,                 𝜋𝜋/2 < 𝛾𝛾 ≤ 𝜋𝜋,    (1) 

where I0 is the maximum luminous intensity at γ = 0; while n = 4, 
3, 2, 1.5, and 1 respectively for BZ1, BZ2, BZ3, BZ4, and BZ5. 
Therefore, Emax will be achieved at position that is the nearest to 
an individual source (e.g. directly beneath it), while Emin will be 
achieved at position that is the farthest to any individual source 
(e.g. midway between two adjacent sources). 

From Fig. 5, it is clear that the median (also the mean) of the EP 
values is: 

 
      (a)                 (b) 

Fig. 2. Plan view of (a) a periodic array and (b) two parallel, periodic arrays of identical light sources with a constant distance λ. The black dots in the middle represent 
the row of calculation points for horizontal illuminance. 
 

 
      (a)                 (b) 

Fig. 3. Elevation view of (a) a periodic array and (b) two parallel, periodic arrays of identical light sources with a constant interval λ, as per Fig. 2. 
 

 
      (a)                 (b) 

Fig. 4. Perspective view of (a) a periodic array and (b) two parallel, periodic arrays of identical light sources with a constant interval λ, as per Fig. 2. 
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𝐸𝐸med = 𝐸𝐸max+𝐸𝐸min
2

,     (2) 

whereas one can define Eo as the difference between Emax and Emed, 
which is equal to the difference between Emed and Emin, which also 
reads: 

𝐸𝐸𝑜𝑜 = 𝐸𝐸max−𝐸𝐸min
2

.      (3) 

The direct EP values at any position x along the calculation row 
(E(x)) can therefore be described in the standard cosine form in Eq. 
(4) as follows: 

𝐸𝐸(𝑥𝑥) = 𝐸𝐸𝑜𝑜 cos( 𝑘𝑘𝑘𝑘 + 𝜙𝜙) + 𝐸𝐸med,    (4) 
where k is the wavenumber, equal to 2π/λ; and ϕ is the phase 
difference relative to the origin as shown in Fig. 5. It is common 
to say that according to the illustration of Fig. 5, ϕ is negative (i.e. 
the signal is lagging behind). The distance xmax (measured from x 
= 0) at which Emax occurs is thus: 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = − 𝜙𝜙
2𝜋𝜋
𝜆𝜆 = −𝜙𝜙

𝑘𝑘
.     (5) 

Consider now another array comprising a large number of 
identical sources mounted at a constant height above the reference 
plane, also with a constant interval λ, but with a spatial phase 
difference δ. Suppose this array is located parallel with the first 
one, at a lateral distance Y, as shown in Figs. 2(b), 3(b), and 4(b). 
The mounting height of the sources in the second array is not 
necessarily the same with those in the first array (z), but it is 
practical and realistic to assume they are the same. If the 
contribution from each array is now measured individually, one 
can thus write: 

𝐸𝐸1(𝑥𝑥)=𝐸𝐸o,1 cos(𝑘𝑘𝑘𝑘+𝜙𝜙1)+𝐸𝐸med,1 ,
𝐸𝐸2(𝑥𝑥)=𝐸𝐸o,2 cos(𝑘𝑘𝑘𝑘+𝜙𝜙2)+𝐸𝐸med,2 ,  (6) 

where E1(x) and E2(x) are respectively the direct horizontal 
illuminances at any position x along the calculation row due to the 
first and the second array. Notice that both arrays have the same 
wavenumber k, since the interval between adjacent sources in both 
arrays is constant. 

Suppose that the contribution from both arrays are to be 
measured altogether. The resulting direct horizontal illuminance 
ET(x) is thus the addition, or superposition, of E1(x) and E2(x). In 
the case where Eo,1 = Eo,2, i.e. when the lateral distances between 
the calculation row and both sources arrays are the same, the E1(x) 

and E2(x) can be simply added using trigonometric identities. 
Otherwise, it is easier to work the superposition using the phasor 
method, which is a routine technique in dealing with signal or 
wave interference. 

In this case, the cosine terms in E1(x) and E2(x) shall be 
described as the real (Re) parts of the complex notations ξ1(x) and 
ξ2(x), which read: 
𝜉𝜉1(𝑥𝑥)=𝐸𝐸o,1[cos(𝑘𝑘𝑘𝑘+𝜙𝜙1)+𝑗𝑗 sin(𝑘𝑘𝑘𝑘+𝜙𝜙1)]=𝐸𝐸o,1𝑒𝑒𝑗𝑗(𝑘𝑘𝑘𝑘+𝜙𝜙1)=𝐸𝐸o,1𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒𝜙𝜙1 ,
𝜉𝜉2(𝑥𝑥)=𝐸𝐸o,2[cos(𝑘𝑘𝑘𝑘+𝜙𝜙2)+𝑗𝑗 sin(𝑘𝑘𝑘𝑘+𝜙𝜙2)]=𝐸𝐸o,2𝑒𝑒𝑗𝑗(𝑘𝑘𝑘𝑘+𝜙𝜙2)=𝐸𝐸o,2𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒𝜙𝜙2  ,

 

(7) 
where j = √–1. 

Since k is constant for both signals, the sum of both complex 
notations, ξT(x), reads: 

𝜉𝜉𝑇𝑇(𝑥𝑥)=𝜉𝜉1(𝑥𝑥)+𝜉𝜉2(𝑥𝑥)=𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗(𝐸𝐸o,1𝑒𝑒𝑗𝑗𝜙𝜙1+𝐸𝐸o,2𝑒𝑒𝑗𝑗𝜙𝜙2)
=𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗(𝐸𝐸o,𝑇𝑇𝑒𝑒𝑗𝑗𝜙𝜙𝑇𝑇) = 𝐸𝐸o,𝑇𝑇𝑒𝑒𝑗𝑗(𝑘𝑘𝑘𝑘+𝜙𝜙𝑇𝑇) .

 (8) 

The variables Eo,T and ϕT can be determined using the phasor 
diagram as illustrated in Fig. 6. One can thus write: 

𝐸𝐸𝑜𝑜,𝑇𝑇 =
�(𝐸𝐸𝑜𝑜,1 cos𝜙𝜙1 + 𝐸𝐸𝑜𝑜,2 cos𝜙𝜙2)2 + (𝐸𝐸𝑜𝑜,1 sin𝜙𝜙1 + 𝐸𝐸𝑜𝑜,2 sin𝜙𝜙2)2, (9) 

𝜙𝜙𝑇𝑇 = arctan 𝐸𝐸𝑜𝑜,1 sin𝜙𝜙1+𝐸𝐸𝑜𝑜,2 sin𝜙𝜙2
𝐸𝐸𝑜𝑜,1 cos𝜙𝜙1+𝐸𝐸𝑜𝑜,2 cos𝜙𝜙2

,   (10) 

𝐸𝐸𝑇𝑇(𝑥𝑥) = Re{ 𝜉𝜉𝑇𝑇(𝑥𝑥)} + 𝐸𝐸med,1 + 𝐸𝐸med,2 = 𝐸𝐸o,𝑇𝑇 cos(𝑘𝑘𝑘𝑘 + 𝜙𝜙𝑇𝑇) +
𝐸𝐸med,1 + 𝐸𝐸med,2.    (11) 

From Equation (11), the maximum, median, and minimum 
values of ET(x) can therefore be determined respectively as follows: 

𝐸𝐸max,𝑇𝑇 = 𝐸𝐸o,𝑇𝑇 + 𝐸𝐸med,1 + 𝐸𝐸med,2,   (12) 

𝐸𝐸med,𝑇𝑇 = 𝐸𝐸med,1 + 𝐸𝐸med,2,    (13) 

𝐸𝐸min,𝑇𝑇 = −𝐸𝐸o,𝑇𝑇 + 𝐸𝐸med,1 + 𝐸𝐸med,2,   (14) 

Having presented the concept, given a configuration of two 
parallel arrays of identical sources as previously described, one 
can estimate the ET(x), by first calculating E1(x) and E2(x) at 
several discrete points along the calculation row (Fig. 7), followed 
by applying the phasor addition. The addition can be performed 
according to one of the following step-by-step approaches: 
• Approach 1 (phasor addition from regression model of 

discrete individual illuminance data):  

 
Fig. 5. Sinusoidal pattern of direct horizontal illuminance due to a periodic array 
of identical sources. 

 
Fig. 6. Phasor diagram representing superposition of direct horizontal illuminance 
due to two parallel, periodic arrays of identical sources. 
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1) Perform curve fitting using sinusoidal regression on the 
discrete E1(x) and E2(x) data. For both datasets, define 
the wavenumber k = 2π/λ, where λ is constant for both 
arrays of sources. Ensure that the coefficient of 
determination (R2) for both sinusoidal models are very 
close to 1. 

2) Observe Eo,1, ϕ1, Emed,1, Eo,2, ϕ2, and Emed,2 values from 
the obtained models. 

3) Add both models of E1(x) and E2(x) using the phasor 
method as per Equations (9) until (11), to obtain Eo,T, ϕT, 
and Emed,T. 

• Approach 2 (phasor addition from observation of discrete 
individual illuminance data): 
1) Observe Emin, Emax, and xmax from the discrete E1(x) and 

E2(x) data. 
2) Calculate Eo and Emed based on Emin and Emax for each 

dataset using Equation (3). 
3) Calculate k = 2π/λ. 
4) Calculate ϕ = –kxmax for each dataset using Equation (5). 
5) Add both models of E1(x) and E2(x) using the phasor 

method as per Equations (9) until (11), to obtain Eo,T, ϕT, 
and Emed,T. 

Results from both approaches shall be verifiable by directly 
observing the addition of E1(x) and E2(x) for each discrete point, 
thus giving discrete ET(x) data as illustrated in Fig. 7, without 
applying the phasor addition. In turn, one of the following step-
by-step approaches can be performed: 
• Approach 3 (regression model from observation of discrete 

total illuminance data): 

1) Perform curve fitting using sinusoidal regression on the 
discrete ET(x). Also define the wavenumber k = 2π/λ and 
ensure that R2  1. 

2) Observe Eo,T, ϕT, and Emed,T values from the obtained 
models. 

• Approach 4 (observation of discrete total illuminance data): 
1) Observe Emin,T, Emax,T, and xmax,T from the discrete ET(x) 

data. 
2) Calculate Eo,T and Emed,T based on Emin,T and Emax,T for 

each dataset using Equation (3). 
3) Calculate k = 2π/λ. 
4) Calculate ϕT = –kxmax,T for each dataset using Equation 

(5). 
Based on the obtained coefficients in Approach 1 until 3, the 

Emin,T, Emax,T, Emed,T, and xmax,T can be estimated. The 
corresponding values obtained in all approaches are expected to 
be close to each other, provided the sinusoidal pattern is achieved. 
It should be noted that only a hypothetical configuration is 
described here, which are relevant to explain the theoretical 
concept of phasor addition in direct horizontal illuminance 
calculation. The function of the space is irrelevant in this part, 
because the concept is meant to be general, and thus is not affected 
by the absolute values of the horizontal illuminance. Material 
reflectance is assumed zero for all surfaces, because only direct 
horizontal illuminance is considered throughout the study. 
Dimensions are provided conceptually (with symbols) in Figs. 2-
4, again because this section only provides the general concept, 
which is not affected by the absolute values of space dimensions. 
To further illustrate and test the concept, several examples are 
given in Section 3. 

 
3. Methods 
3.1. Verification 
To give an illustration of the proposed concept in Section 2, 
consider the configuration of two parallel arrays of identical 
sources in Fig. 8. The distance between arrays (Y), the distance 
between adjacent sources (λ), and the mounting height (z) are set 
constant as 3 m. Each array consists of 14 identical downlight 
sources, each of having LID according to either BZ1 or BZ5 type, 
with the maximum luminous intensity of 1800 cd (i.e. yielding E 
= 200 lx at a point 3 m directly beneath the source’s centre). The 
observed space in Fig. 8 can be thought as a large reading hall in 
libraries (as in Fig. 1), provided a nighttime situation and a 
relatively low or negligible mean room surface reflectance. The 
specified maximum luminous intensity and the corresponding 
direct horizontal illuminance can thus be attributed to the chosen 
function. 

 
Fig. 7. Illustration of discrete E1(x), E2(x), and ET(x) data along the calculation 
row. 

 
Fig. 8. Plan view of the tested configuration; units in meter. 
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There are 60 calculation points with an interval of 0.1 m along 
the calculation row, located at x = –1.5 until 4.5 m, according to 
the plan view in Fig. 8. The calculation row is at lateral distance y 
= yP; where yP = 0, 0.5, 1.0, or 1.5 m. The spatial phase difference 
δ between both arrays is defined as 0, 0.5, 1.0, or 1.5 m, all shifted 
towards the right-hand side of the first array. Table 1 lists all 
variables considered (LID, yP, and δ)  in the test. All combinations 
are considered, except the ones with yP = δ = 1.5 m, because E1(x) 
and E2(x) will cancel each other out with respect to Emed, so that 
the resulting ET(x) curves will be entirely flat and thus do not 
behave like sinusoidal signals. Therefore, in total there are 30 (= 
2×4×4 – 2) combinations. 

While the length of the calculation row is only 6 m, it is 
necessary to introduce as many as 14 sources in each array to 
ensure the sinusoidal pattern is conserved in the calculation row. 
If there are too few sources in each array, the resulting E2(x) due 
to shifted sources in the second array will be asymmetrical, 
because the calculation points on the left-hand side will see less 
contribution from the sources compared to the right-hand side. 

The direct EP at the i-th calculation point (EP,i) due to an 
individual source Si can be simply determined using the formula 
of point light source as follows: 

𝐸𝐸𝑃𝑃,𝑖𝑖 = 𝐼𝐼𝛾𝛾
𝑟𝑟𝑖𝑖
2 cos𝛼𝛼 = 𝐼𝐼𝛾𝛾

𝑟𝑟𝑖𝑖
2
𝑧𝑧
𝑟𝑟𝑖𝑖

= 𝐼𝐼𝛾𝛾
𝑟𝑟𝑖𝑖
3 ⋅ 𝑧𝑧.    (15) 

where α is the angle between the line of sight and the normal of 
the calculation point; ri is the distance between Si and the 
calculation point. In this case, α = γ since the source’s and 

receiver’s normal are parallel. Substituting Equation (1) to (15), 
for 0 ≤ γ ≤ π/2, one can write: 

𝐸𝐸𝑃𝑃,𝑖𝑖 = 𝐼𝐼0
𝑟𝑟𝑖𝑖
3 (cos 𝛾𝛾)𝑛𝑛 ⋅ 𝑧𝑧 = 𝐼𝐼0

𝑟𝑟𝑖𝑖
3 �

𝑧𝑧
𝑟𝑟𝑖𝑖
�
𝑛𝑛
⋅ 𝑧𝑧 = 𝐼𝐼0𝑧𝑧𝑛𝑛+1

𝑟𝑟𝑖𝑖
𝑛𝑛+3 .  (16) 

The total direct EP at the i-th calculation point (E(x)) due to N 
number of sources is thus simply the sum of EP,i from each source. 

𝐸𝐸(𝑥𝑥) = ∑ 𝐸𝐸𝑃𝑃,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 .     (17) 

After performing routine calculations to obtain E(x) at the entire 
60 points along the calculation row, the E1(x) and E2(x) values are 
determined. In turn, the four approaches described in the end of 
Section 2 are applied to estimate the sinusoidal model of ET(x). In 
particular, the curve fitting method using sinusoidal regression is 
applied using an online calculator [27]. The calculator returns the 
regression model as y = a sin (bx + c) – d, where x and y are the 
input and output variables, while a, b, c, d are coefficients to be 
computed. However, since sin θ = cos (θ – π/2), the regression 
model can be presented as y = a cos (bx + c – π/2) – d, which can 
be compared with the standard forms in Equation (6). Finally, the 
values of Emin,T, Emax,T, Emed,T, and xmax,T from all approaches are 
reported and compared to each other. 

 
3.2. Sensitivity analysis 
To observe the influence of each input variable to the resulting 
pattern of ET(x), sensitivity analysis is conducted by performing 
multiple linear regression on the input and output variables. As 
defined in Table 1, the input variables are the LID (represented 
with the n number; 4 for BZ1, 1 for BZ5), yP, and δ. To create a 
fair comparison, the observed output variables are ΔE = (Emax,T – 
Emin,T)/Emed,T and xmax,T. 

In turn, the input (ni, yPi, δi) and output (ΔEi and xmax,T,i) variables 
in any of the i-th configuration are normalised with respect to the 
mean (μ) and standard deviation (σ) values, to obtain normalised 
input (ni ’, yPi’, δi’)  and output (ΔEi ’) variables as follows: 

Table 1. List of all variables considered in the test. 

Variable Value 

LID BZ1, BZ5 
yP 0, 0.5, 1.0, 1.5 m 
δ 0, 0.5, 1.0, 1.5 m 

 

Table 2. Obtained values of Emin,T, Emax,T, Emed,T, and xmax,T using the four approaches in the configuration with BZ1 LID type.  
yP [m]  0 0 0 0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5 

 
δ [m] 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0.0 0.5 1.0 

Emin,T App. 1 216 216 217 217 219 219 220 221 209 211 214 216 204 206 211 
[lx] App. 2 216 216 217 217 219 219 220 221 209 211 214 216 204 206 211 
 App. 3 216 216 217 217 219 219 220 221 209 211 214 216 204 206 211 
 App. 4 216 216 216 217 219 219 220 221 209 211 214 215 204 206 211 
Emax,T App. 1 264 263 263 263 262 261 260 259 243 241 238 236 232 231 225 
[lx] App. 2 264 264 263 263 262 261 260 259 243 241 238 236 233 231 225 
 App. 3 264 263 263 263 262 261 260 259 243 241 238 236 232 231 225 
 App. 4 264 264 263 263 262 261 260 259 243 241 238 237 233 231 225 
Emed,T App. 1 240 240 240 240 240 240 240 240 226 226 226 226 218 218 218 
[lx] App. 2 240 240 240 240 240 240 240 240 226 226 226 226 218 218 218 
 App. 3 240 240 240 240 240 240 240 240 226 226 226 226 218 218 218 
 App. 4 240 240 240 240 240 240 240 240 226 226 226 226 218 218 218 
xmax,T App. 1 0.00 0.01 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.09 0.11 0.00 0.00 0.25 0.50 
[m] App. 2 0.00 0.01 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.09 0.11 0.00 0.00 0.25 0.50 
 App. 3 0.00 0.01 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.09 0.11 0.00 0.00 0.25 0.50 
 App. 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00 0.25 0.50 
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𝑛𝑛′𝑖𝑖 = 𝑛𝑛𝑖𝑖−𝜇𝜇𝑛𝑛
𝜎𝜎𝑛𝑛

  ;   𝑦𝑦𝑃𝑃′𝑖𝑖 =
𝑦𝑦𝑃𝑃𝑃𝑃−𝜇𝜇𝑦𝑦𝑃𝑃
𝜎𝜎𝑦𝑦𝑃𝑃

  ;  𝛿𝛿′𝑖𝑖 = 𝛿𝛿𝑖𝑖−𝜇𝜇𝛿𝛿
𝜎𝜎𝛿𝛿

  ;  𝑖𝑖 = 1,2, . . . ,30, 

(18) 

𝛥𝛥𝛥𝛥′𝑖𝑖=
𝛥𝛥𝐸𝐸𝑖𝑖−𝜇𝜇𝛥𝛥𝛥𝛥

𝜎𝜎𝛥𝛥𝛥𝛥
  ;  𝑥𝑥′𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇,𝑖𝑖=

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇,𝑖𝑖−𝜇𝜇𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇,𝑖𝑖
𝜎𝜎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇,𝑖𝑖

 ;

𝑖𝑖=1,2,...,30,
  (19) 

The regression analysis for is performed according to the 
following linear models in Equations (20) and (21): 

𝛥𝛥𝛥𝛥′ = 𝛽𝛽1′𝑛𝑛′ + 𝛽𝛽2′𝑦𝑦𝑃𝑃′ + 𝛽𝛽3′𝛿𝛿′ + 𝜀𝜀′,    (20) 
𝑥𝑥′max,𝑇𝑇 = 𝛽𝛽1′𝑛𝑛′ + 𝛽𝛽2′𝑦𝑦𝑃𝑃′ + 𝛽𝛽3′𝛿𝛿′ + 𝜀𝜀′,   (21) 

where β ’ is the standardised regression coefficient (SRC), and ε ’ 
is the intercept or residual error. The SRC values represent the 
influence of each input variable on the output, where SRC = 1 

suggests a highly positive influence, SRC = –1 suggests a highly 
negative influence, and SRC = 0 suggests no influence at all. 
 
4. Results 
4.1. Verification 
The resulting values of Emin,T, Emax,T, Emed,T, and xmax,T obtained 
using the four approaches are summarised in Table 2 (for BZ1 LID 
type) and Table 3 (for BZ5 LID type). Meanwhile, Tables 4 and 5 
reports the absolute difference between the largest and smallest 
obtained values among the four approaches, for both LID types, 
and for each combination of yP and δ. It is observed that the 
differences between values obtained from all approaches are very 
small, i.e. ≤ 0.5 lx for the illuminances and ≤ 0.04 m for xmax,T. 
Therefore, the proposed concept is verified and any of the four 
approaches can be applied for the considered scenarios. 

Table 3. Obtained values of Emin,T, Emax,T, Emed,T, and xmax,T using the four approaches in the configuration with the BZ5 LID type.  
yP [m] 0 0 0 0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5 

 
δ [m] 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0.0 0.5 1.0 

Emin,T App. 1 416 416 416 416 435 435 436 436 441 442 444 445 442 443 446 
[lx] App. 2 415 416 416 416 434 435 436 436 441 442 443 444 442 443 445 
 App. 3 415 416 416 416 435 435 436 436 441 442 444 445 442 443 446 
 App. 4 415 415 416 416 434 435 436 436 441 442 443 444 442 443 446 
Emax,T App. 1 433 433 433 433 451 451 450 450 455 455 453 452 455 454 452 
[lx] App. 2 433 433 433 433 452 451 450 450 456 455 453 452 455 454 452 
 App. 3 433 433 433 433 451 451 450 450 455 455 453 452 455 454 452 
 App. 4 433 433 433 433 452 451 450 450 456 455 453 452 455 454 452 
Emed,T App. 1 424 424 424 424 443 443 443 443 448 448 448 448 449 449 449 
[lx] App. 2 424 424 424 424 443 443 443 443 448 448 448 448 449 449 449 
 App. 3 424 424 424 424 443 443 443 443 448 448 448 448 449 449 449 
 App. 4 424 424 424 424 443 443 443 443 448 448 448 448 449 449 449 
xmax,T App. 1 0.00 0.01 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.10 0.14 0.01 0.00 0.24 0.49 
[m] App. 2 0.00 0.02 0.02 0.00 0.00 0.04 0.04 0.00 0.00 0.11 0.14 0.00 0.00 0.25 0.49 
 App. 3 0.00 0.01 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.10 0.14 0.01 0.00 0.24 0.49 
 App. 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00 0.25 0.50 

 
Table 4. Absolute differences between the largest and smallest values of Emin,T, Emax,T, Emed,T, and xmax,T obtained with the four approaches in the configuration with BZ1 
LID type. 

yP [m]  0 0 0 0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5 
δ [m] 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0.0 0.5 1.0 

Emin,T [lx] 0.0 0.1 0.2 0.4 0.0 0.1 0.2 0.4 0.1 0.1 0.3 0.5 0.1 0.1 0.2 
Emax,T [lx] 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.0 
Emed,T [lx] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.0 0.1 0.1 
xmax,T [m] 0.00 0.01 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

 
Table 5. Absolute differences between the largest and smallest values of Emin,T, Emax,T, Emed,T, and xmax,T obtained with the four approaches in the configuration with BZ5 
LID type. 

yP [m]  0 0 0 0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5 
δ [m] 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0.0 0.5 1.0 

Emin,T [lx] 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.3 0.2 0.1 
Emax,T [lx] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Emed,T [lx] 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
xmax,T [m] 0.00 0.02 0.02 0.00 0.00 0.04 0.04 0.00 0.00 0.01 0.04 0.01 0.00 0.01 0.01 
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The greatest difference between illuminances obtained using the 
four approaches is 0.5 lx, achieved for Emin,T in the configuration 
with yP = 1 m, δ = 1.5 m, BZ1 type. Meanwhile, the greatest 
difference between xmax,T values from all approaches is 0.04 m, i.e. 
less than half of the interval between calculation points, achieved 
in the configuration with (yP, δ) = (0.5 m, 0.5 m); (0.5 m, 1.0 m); 
and (1 m, 1 m); all with BZ5 type. The greatest differences 
between Emax,T values and between Emed,T values from all 
approaches are found to be only 0.2 lx, hence practically no 
difference at all. 

To give further illustrations, Fig. 9 displays the plots of ET(x) 
with respect to x ∈ [–1.5 m, 4.5 m], obtained using the four 
approaches, in the configuration with yP = 1 m, δ = 1 m, BZ1 type; 
and yP = 1 m, δ = 1.5 m, BZ5 type. It is observed that the resulting 
graphs are perfectly sinusoidal and nearly identical with each other, 
suggesting a good agreement between all approaches, either with 
or without applying the phasor addition, regardless of the selected 
configuration. 
 
4.2. Sensitivity analysis 
Table 6 displays the SRC (β ’) of each input variable in Equation 
(20), based on the sensitivity analysis results. The adjusted 
coefficient of determination (R2

adj) of the linear model of ΔE ’ is 
0.921, and thus is sufficiently high to ensure reliable results. 

The largest SRC in the ΔE ’ sensitivity model is 0.899, obtained 
for n’. In other words, the choice of LID type of the source can 
significantly affect ΔE. When n = 1 (BZ5 type), ΔE is relatively 
small so that the fluctuation between Emax,T and Emin,T may be 
unnoticeable, because the sources’ LID is wide (120° beam angle) 
and thus create smaller contrast within points along the calculation 
row. Conversely, when n = 5 (BZ1 type, 66° beam angle), the 
fluctuation may be noticeable, since the narrow LID corresponds 
to smaller beam angle, yielding a greater contrast along the row. 

For any n values in between, the resulting performance can be 
estimated accordingly due to the linear behaviour of the variables. 

Meanwhile, the lateral position of the calculation row (yP) and 
spatial phase difference (δ) are relatively less influential on the 
fluctuation (SRC = –0.341 and –0.131 respectively). The impacts 
from both variables are negative, meaning that the larger the yP 
and δ values, the smaller the spatial contrast. It should be noticed 
however that the variation of yP and δ is periodic, so that the 
predicted effects only apply within the range between 0 and λ/2. 
Beyond that range, the effect would be symmetrical and not be 
continuously increasing (or decreasing). 

  
(a)                         (b) 

Fig. 9. Total direct horizontal illuminance ET(x) obtained using Approach 1 until 4, in the configuration with (a) yP = 1 m, δ = 1 m, BZ1 type; (b) yP = 1 m, δ = 1.5 m, 
BZ5 type. 
 
Table 6. SRC (β ’) of each input variable based on the sensitivity analysis results. 

Output \ Input n ’ yP ’ δ ’ ε ’ R2
adj 

ΔE ’ 0.899 –0.341 –0.131 6.18×10–16  0.921 
x ’max,T –0.012 0.619 0.206 1.35×10–16 0.321 

 

 
Fig. 10. Average xmax,T in all configurations against yP; error bars denote the 
standard deviations. 
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While the ΔE ’ sensitivity model is highly linear, the x ’max,T 
model is not (R2

adj = 0.321); so that the results cannot be held 
reliable. It is noticed however that the largest SRC in that model 
is of yP’ (0.619). Thus, an additional analysis is performed by 
plotting the average xmax,T in all configurations against the yP 
values. Figure 10 displays the resulting plot, suggesting a 
logarithmic relation (R2 = 0.998) between both variables. The 
standard deviation from the average values, however, can be 
considerably large, particularly for yP = 1.5 m. The large 
deviations can be attributed to the significant difference of both 
LID types, which can be observed from pattern comparison as 
follows. 

The sinusoidal patterns of ET(x) in all configurations are 
compared to each other in Fig. 11, with respect to x ∈ [–1.5 m, 4.5 
m]. With the same I0 value of 1800 cd for both LID types, the 
resulting ET(x) values for BZ5 are approximately twice those for 
BZ1. The ET(x) fluctuations (i.e. Emax – Emin = 2Eo) due to BZ1 can 
be as large as 50 lx, whereas those due to BZ5 are not found larger 
than 15 lx. This is again due to the beam angles associated with 
the LID pattern, where larger n values (as in BZ1) correspond to 
narrower light distribution, hence greater spatial contrast. In 
general, it explains why the LID types are deemed significant in 
influencing ΔE in the sensitivity analysis. Meanwhile, the impact 
of yP and δ variations on ΔE patterns are not consistent across all 
configurations. In the BZ5 type, ΔE values tend to be similar 
regardless the yP and δ. However, in the BZ1 type, larger ΔE 
values are found for yP = 0 and 0.5 m; while for yP = 1 and 1.5 m, 
the values tend to become smaller. 

With respect to xmax,T, it is observed that for 0 ≤ yP ≤ 1 m, the 
xmax,T values are close to zero, meaning that the maximum ET(x) 
are located near any individual source in the first array. The 
behaviour of xmax,T due to variation of yP is however not linear, as 
described in Fig. 10. When yP = 1.5 m, i.e. halfway the lateral 
distance between both arrays (Y), the shift of xmax,T due to varying 
δ is more noticeable, up to 0.5 m. In the scenarios with yP = 1.5 m 
and δ = 1 m, not only the location of maximum ET(x) shifts to the 
right, but also the ΔE tends to get smaller, suggesting less 
fluctuating pattern. When yP = δ = 1.5 m, there will be no 
fluctuations at all (ΔE = 0), thus a completely uniform spatial 
pattern is achieved along the particular row. 

As an alternative to visualise the results, several samples of the 
scenes with BZ1, δ = 0; BZ1, δ = 1.5 m; BZ5, δ = 0; and BZ5, δ = 
1.5 m are modelled and simulated in DIALux 4.12 [28,29], with 
light loss factor of 1.0. In addition, to visualise the illuminance 
distribution on arbitrary vertical planes, two parallel black walls 
are introduced at y = –0.5 m and 3.5 m (i.e. 0.5 m beyond each 
sources’ array). The resulting false colour images showing direct 
illuminance distribution on the surfaces in those scenes are 
displayed in Fig. 12. Note that the same illuminance scale, 
between 150 and 550 lx, are employed in those four scenes. 

It is observed that while the maximum luminous intensity I0 = 
1800 cd is constant for both BZ types, the maximum EP values in 
the BZ1 scenes are smaller than those in the BZ5 scenes, due to 
the wider LID in the latter. For the same reason, the EP variations 
in the BZ5 scenes are also less visible than those in the BZ1 scenes. 
Regardless of the δ values, the highest spatial contrast in the BZ1 
scenes are found between the points beneath the sources and those 
on the middle row. Nevertheless, increasing the δ value up to 1.5 
m (= λ/2) may reduce this contrast, relative to δ = 0. In the BZ5 
scenes, shifting the δ value is not expected to dramatically change 
the visual observation of the horizontal surface. 
 
5. Discussion 
The following remarks can be made regarding the phasor method 
proposed in Section 2 as Approaches 1 and 2. Both approaches can 
be employed in the situation where the individual EP from the 
source is known or can be determined. Approach 2 is relatively 
simpler than Approach 1, which requires a certain sinusoidal 
regression calculator; but if there are too few discrete EP data, the 
estimation of xmax value in Approach 2 may be incorrect, because 
the actual xmax value may be located between (i.e. not exactly on) 
the observed calculation points. 

Meanwhile, the direct observation of ET(x) data as in 
Approaches 3 and 4 can be performed only if such data are 
available, for instance in an actual installation. Approach 4 is 
simpler than Approach 2, with the same reason as in Approach 2 
to Approach 1. Again, Approach 4 may however be less accurate 
if the actual xmax value lies between the observed calculation points. 
Of course, the individual EP from the two sources’ arrays can be 

     
(a)                               (b) 

Fig. 11. Total direct horizontal illuminance ET(x) in all configurations with (a) BZ1 and (b) BZ5 LID type. 
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simply added to each other to obtain ET(x); but the idea is to 
determine the optimum configuration of both arrays without 
having to perform the ‘trial and error’ approach. By showing that 
the results obtained using all four approaches are similar to each 
other, the concept of phasor method to predict the ET(x) in this case 
is verified. 

In turn, one may still question the usefulness of such concept in 
lighting design. To answer that, it is first to be understood that an 
engineering design process requires a known relation between 
input (design parameters) and output variables (performance 
indicators). Once the values of the output variables have been 
defined, for instance based on standards, regulations, or user 
requirements, the designer shall be able to determine the required 
input variables values. In this case, the resulting ET(x) pattern is 
the desired output, whereas the geometrical variables are to be 
designed accordingly. 

An obvious example would be the case to determine the position 
of calculation row having uniform pattern of ET(x), which can be 
achieved by setting yP = Y/2 and δ = λ/2. Since Y and λ cannot be 
zero because both arrays and adjacent sources must be separated 
by a finite distance, δ cannot be zero either. When the arrays 
configuration is staggered with δ = λ/2, i.e. half the interval 
between adjacent sources in each array, the E1(x) and E2(x) 
patterns cancel each other out with respect to Emed, as mentioned 
in Section 3. Applying a perfectly aligned configuration (δ = 0), 
instead of the staggered one, shall not yield a uniform pattern in 
the middle row. Of course, these observations are valid with the 
underlying assumptions, e.g. the sources in each array are identical 
and have a cosine-like LID type, the interval λ is constant for both 
arrays, and only direct illuminances are considered. Nevertheless, 
the general idea should be visible here. 

While the case of yP = Y/2 is quite intuitive due to symmetry, the 
case of arbitrary yP values (0 < yP < Y/2) may be less obvious, so 

that the configuration of both arrays should be designed properly. 
In that case, one can start with the desired sinusoidal pattern of 
ET(x), by defining the intended Emin,T, Emax,T, Emed,T, and xmax,T 
values, so that Eo,T, k (= 2π/λ), and ϕT coefficients can be 
determined. Next, the contribution from a single array to the 
calculation row may be determined, so that Eo,1 can be defined, 
whereas k is already a constant and ϕ1 can be set to zero with 
respect to the first array. Equations (9) and (10) can therefore be 
applied simultaneously to determine Eo,2 and ϕ2. Once Eo,2 and ϕ2 
are known, the location of the second array can be determined. 

Equivalently, one can construct the phasor diagram as in Fig. 6 
and proceed with conducting the analysis to obtain Eo,2 and ϕ2 (Fig. 
13). From the diagram, one can write: tan ϕ2 = Eo,T sin ϕT / (Eo,T 
cos ϕT – Eo,1) and then solve for ϕ2. Furthermore, since Eo,2 sin ϕ2 
= Eo,T sin ϕT, one can also solve for Eo,2. Again, the advantage of 
using phasor method with complex notation is demonstrated here, 
which is expected to help in understanding the superposition 
phenomenon and in achieving the intended ET(x) pattern. 

As mentioned earlier, several main assumptions are required in 
the entire concept. First, all sources should possess a cosine-like 
LID, so that the resulting E1(x), E2(x), and ET(x) all reveal 
sinusoidal patterns. Such LID type is reasonable for typical 
downlight, point-source luminaires for indoor applications. Thus, 
the proposed cases may be applicable for interior spaces with 
parallel and periodic arrays of downlights and with little 
reflections from the surrounding surfaces, e.g. large reading halls 
in libraries (as in Fig. 1), auditoriums, theatres, or galleries. It is 
also possible to find applications in outdoor scenes, as in 
pedestrian or small residential lighting. Meanwhile, large street 
lighting luminaires typically have a batwing type of LID, which 
will yield a sawtooth-like, instead of sinusoidal, pattern of 
illuminance. 

 
Fig. 12. False colour images of direct illuminance on surfaces in scenes with (a) BZ1, δ = 0, (b) BZ1, δ = 1.5 m, (c) BZ5, δ = 0, (d) BZ5, δ = 1.5 m, simulated in DIALux 
4.12. 
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The second main assumption is that both arrays have a constant 
spatial wavelength λ, which is necessary to enable the use of 
phasor diagram, where one can put the term ejkx in Equation (8) 
aside and recall it later once the superposition has been done. In 
cases where λ from both arrays are different, the cosine terms shall 
be added individually. In turn, it should be possible to decompose 
the combined pattern of ET(x) using Fourier series expansion, to 
reveal the individual wavelengths (or frequencies). This is beyond 
the scope of this article but can be definitely considered for future 
studies. 

Finally, to give another perspective on the applicability of the 
proposed concept, it is worthwhile to thoroughly read the proposal 
of Cuttle et al. [12,23,24] regarding the appearance-based, 
perceived adequacy of illumination (PAI), and the eventual 
reception of his proposal during the past decade. While they argue 
that horizontal illuminance is not necessarily related with PAI and 
spatial brightness [12], some (perhaps many) will keep saying that 
horizontal workplane illuminance is still very much what matters 
in the design practice [30]. In this current study, though still based 
on horizontal illuminance, the resulting patterns are never 
expected to be uniform (except for the special case of yP = Y/2 and 
δ = λ/2), and thus can be related to some extent with the concept 
of target/ambience illuminance ratio (TAIR) [24,30]. For instance, 
though not exactly the same, the Emin can be compared in analogy 
with the ambient illuminance, whereas Emax with the target 
illuminance. 

As a follow-up of this current study, further investigations are 
suggested on more scenarios involving sinusoidal patterns of 
illuminance in various realistic situations, for instance in large 
halls or residential roads. Furthermore, since this study only 
considers regularly-spaced arrays of sources, scenarios in future 
studies can also be extended to irregularly-spaced arrays. The 
proposed phasor method in this study is thus expected to become 
a tool to better understand the physical phenomena of light 
superposition from parallel arrays of sources, and eventually to 
refresh the design practice in such cases. 
 
6. Conclusion 
Direct horizontal illuminance along a calculation row (ET(x)) due 
to two parallel and periodic arrays of large numbers of identical 
light sources, with a cosine-like luminous intensity distribution 
(LID) type, reveals a sinusoidal pattern that contains several 
important information. Four different approaches, including the 
use of phasor method, are employed to verify the concept of 

adding the sinusoidal pattern of direct illuminance from both 
arrays. Examples of configuration with BZ1 or BZ5 LID type are 
introduced, as described in Section 3. A very good agreement, 
with differences of ≤ 0.5 lx for the illuminances (Emax,T, Emin,T, 
Emed,T) and ≤ 0.04 m for the position of maximum illuminance 
(xmax,T), is found between all approaches in all configurations. The 
proposed concept is thus verified. 

Based on the sensitivity analysis, the choice of LID type 
significantly affects ΔE, which is the ratio between (Emax,T – Emin,T) 
and Emed,T. For BZ5 type, ΔE is relatively small so that the 
illuminance fluctuation may be unnoticeable, because the sources’ 
LID is wide (120° beam angle) and thus create smaller contrast 
within points along the calculation row. For BZ1 type, the 
fluctuation may however be noticeable, since the narrow LID 
corresponds to smaller beam angle, yielding greater spatial 
contrast. 

Meanwhile, the impact of lateral position of the calculation row 
(yP) and the spatial phase difference (δ) on ΔE patterns are 
inconsistent. In the tested scenarios, for 0 ≤ yP ≤ 1 m, the maximum 
ET(x) are located near any individual source in the first array. The 
behaviour of xmax,T due to variation of yP is however not linear. 
When yP = 1.5 m, i.e. halfway the lateral distance between both 
arrays (Y), the shift of xmax,T due to varying δ is more noticeable. 
In the scenarios with yP = 1.5 m and δ = 1 m, not only the location 
of maximum ET(x) shifts to the right, but also the ET(x) fluctuation 
becomes less. When yP = δ = 1.5 m, a completely uniform spatial 
pattern with no fluctuations is achieved along the particular row. 
Overall, the advantage of using phasor method with complex 
notation has been demonstrated, which is expected to help in 
understanding the superposition phenomenon of sinusoidal pattern 
of illuminance, and in achieving the desired spatial contrast. 
 
Acknowledgement 
This research is supported by the Institute of Research and 
Community Service of Institut Teknologi Bandung (LPPM ITB), 
under the P3MI 2020 research scheme. 
 
Contributions 
R. A. M. designed the research framework, performed the 
computation and simulation, and wrote the manuscript. At. 
reviewed and co-wrote the manuscript. 
 
Declaration of competing interest 
The author declares that there is no conflict of interest. 
 
References 
[1] J.H. Lambert, Photometria, sive de Mensura et Gradibus Luminis, Colorum 

et Umbrae, Eberhard Klett, Augsburg, 1760.  
[2] D.L. DiLaura, K.W. Houser, R.G. Mistrick, G.R. Steffy (eds.), The Lighting 

Handbook: Reference and Application, 10th Edition, Illuminating 
Engineering Society, New York, 2011. 

[3] P.R Boyce, Editorial: Illuminating engineering rises from the grave, 
Lighting Research and Technology 51 (2019) 487–487. 

[4] C.E. Ochoa, M.B.C. Aries, J.L.M. Hensen, State of the art in lighting 
simulation for building science: a literature review, Journal of Building 
Performance Simulation 5 (2012) 209–233. 

[5] Z. Huang, A. Sanderson, Light field modelling and interpolation using 
Kriging techniques, Lighting Research and Technology 46 (2013) 219–237. 

[6] A.A. Baloch, P.H. Shaikh, F. Shaikh, Z.H. Leghari, N.H. Mirjat, M.A. Uqai, 
Simulation tools application for artificial lighting in buildings, Renewable 
and Sustainable Energy Reviews 82 (2018) 3007–3026. 

 
Fig. 13. Phasor diagram to determine Eo,2 and ϕ2 from the defined Eo,T, ϕT, Eo,1, and 
ϕ1 (= 0). 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/1477153519852246
https://doi.org/10.1177/1477153519852246
https://doi.org/10.1080/19401493.2011.558211
https://doi.org/10.1080/19401493.2011.558211
https://doi.org/10.1080/19401493.2011.558211
https://doi.org/10.1177/1477153512473996
https://doi.org/10.1177/1477153512473996
https://doi.org/10.1016/j.rser.2017.10.035
https://doi.org/10.1016/j.rser.2017.10.035
https://doi.org/10.1016/j.rser.2017.10.035


257 R. A. Mangkuto & Atthaillah / Journal of Daylighting 7 (2020) 246–257 

2383-8701/© 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

[7] R.H. Simons, A.R. Bean, Lighting Engineering: Applied Calculations, 
Architectural Press, Oxford, 2001. 

[8] C.F. Reinhart, T. Dogan, D. Ibarra, H.W. Samuelson, Learning by playing 
– teaching energy simulation as a game. Journal of Building Performance 
Simulation 5 (2012) 359–368. 

[9] I. Beausoleil-Morrison, Learning the fundamentals of building performance 
simulation through an experiential teaching approach, Journal of Building 
Performance Simulation 12 (2019) 308–325. 

[10] J.A. Lynes, Designing for contrast rendition, Lighting Research and 
Technology 14 (1982) 1–18. 

[11] S. Rockcastle, M. Amundadottir, M. Andersen, Contrast measures for 
predicting perceptual effects of daylight in architectural renderings, 
Lighting Research and Technology 49 (2016) 882–903. 

[12] J. Duff, K. Kelly, C. Cuttle, Perceived adequacy of illumination, spatial 
brightness, horizontal illuminance and mean room surface exitance in a 
small office, Lighting Research and Technology 49 (2017) 133–146. 

[13] J.M. Monteoliva, A. Villalba, A. Pattini, Daylighting metrics: an approach 
to dynamic cubic illuminance, Journal of Daylighting 5 (2018) 34–42. 

[14] V.W.L. Lo, K.A. Steemers, Methods for assessing the effects of spatial 
luminance patterns on perceived qualities of concert lighting, Lighting 
Research and Technology 52 (2019) 106–130. 

[15] F. Selim, S.M. Elkholy, A.F. Bendary, A new trend for indoor lighting 
design based on a hybrid methodology, Journal of Daylighting 7 (2020) 
137–153. 

[16] A. Lauria, S. Secchi, L. Vessella, Visual wayfinding for partially sighted 
pedestrians – The use of luminance contrast in outdoor pavings, Lighting 
Research and Technology 51 (2018) 937–955. 

[17] Y. Jiang, S. Li, B. Guan, G. Zhao, D. Boruff, L. Garg, P. Patel, Field 
evaluation of selected light sources for roadway lighting, Journal of Traffic 
and Transportation Engineering (English Edition) 5 (2018) 372–385. 

[18] D.M. Kretzer, High-mast lighting as an adequate way of lighting pedestrian 
paths in informal settlements?, Development Engineering 5 (2020) 100053. 

[19] S. Fotios, C. Robbins, Research Note: Describing average illuminance for 
P-class roads, Lighting Research and Technology, in press. 

[20] D. Cetegen, J. Veitch, G. Newsham, View size and office illuminance 
effects on employee satisfaction, Proceedings of Balkan light, Ljubljana, 
Slovenia (2008). 

[21] D. Tiller, J. Veitch, Perceived room brightness: pilot study on the effect of 
luminance distribution, Lighting Research and Technology 27 (1995) 93–
101. 

[22] K. Wymelenberg, M. Inanici, A study of luminance distribution patterns 
and occupant preference in daylit offices, Proceedings of PLEA 2009 - the 
26th conference on passive and low energy architecture, Quebec City 
(2009). 

[23] C. Cuttle, Towards the third stage of lighting profession, Lighting Research 
and Technology 42 (2010) 73–93. 

[24] C. Cuttle, A new direction for general lighting practice, Lighting Research 
and Technology 45 (2013) 22–39. 

[25] W.R. Stevens, Building Physics: Lighting – Seeing in the Artificial 
Environment, Pergamon Press, Exeter, 1969. 

[26] J.A. Lynes, Does the British Zonal System have a future?, Lighting 
Research and Technology 11 (1979) 150–153. 

[27] Stats.Blue, Sinusoidal Regression Calculator, Available online at: 
http://stats.blue/Stats_Suite/sinusoidal_regression_calculator.html. 2018. 

[28] DIAL GmbH. DIALux. Available online at: https://www.dial.de/en/dialux/. 
[29] R.A. Mangkuto, Validation of DIALux 4.12 and DIALux evo 4.1 against 

the analytical test cases of CIE 171:2006, LEUKOS 12 (2016) 139–150. 
[30] C. Cuttle, Lighting by Design. 2nd Edition, Routledge, London, 2008. 
 
 

 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/19401493.2011.619668
https://doi.org/10.1080/19401493.2011.619668
https://doi.org/10.1080/19401493.2011.619668
https://doi.org/10.1080/19401493.2018.1479773
https://doi.org/10.1080/19401493.2018.1479773
https://doi.org/10.1080/19401493.2018.1479773
https://doi.org/10.1177/096032718201400101
https://doi.org/10.1177/096032718201400101
https://doi.org/10.1177/1477153516644292
https://doi.org/10.1177/1477153516644292
https://doi.org/10.1177/1477153516644292
https://doi.org/10.1177/1477153515599189
https://doi.org/10.1177/1477153515599189
https://doi.org/10.1177/1477153515599189
https://doi.org/10.15627/jd.2018.6
https://doi.org/10.15627/jd.2018.6
https://doi.org/10.1177/1477153519841098
https://doi.org/10.1177/1477153519841098
https://doi.org/10.1177/1477153519841098
https://doi.org/10.1177/1477153518792978
https://doi.org/10.1177/1477153518792978
https://doi.org/10.1177/1477153518792978
https://doi.org/10.1016/j.jtte.2018.05.002
https://doi.org/10.1016/j.jtte.2018.05.002
https://doi.org/10.1016/j.jtte.2018.05.002
https://doi.org/10.1016/j.deveng.2020.100053
https://doi.org/10.1016/j.deveng.2020.100053
https://doi.org/10.1177/1477153520911193
https://doi.org/10.1177/1477153520911193
https://doi.org/10.1177/14771535950270020401
https://doi.org/10.1177/14771535950270020401
https://doi.org/10.1177/14771535950270020401
https://doi.org/10.1177/1477153509104013
https://doi.org/10.1177/1477153509104013
https://doi.org/10.1177/1477153512469201
https://doi.org/10.1177/1477153512469201
https://doi.org/10.1177/14771535790110030201
https://doi.org/10.1177/14771535790110030201
https://doi.org/10.1080/15502724.2015.1061438
https://doi.org/10.1080/15502724.2015.1061438

	Phasor Method to Estimate Illuminances Due to Parallel Arrays of Light Sources
	Nomenclature
	Abstract
	1. Introduction
	2. Concept
	3. Methods
	3.1. Verification
	3.2. Sensitivity analysis

	4. Results
	4.1. Verification
	4.2. Sensitivity analysis

	5. Discussion
	6. Conclusion
	Acknowledgement
	Contributions
	Declaration of competing interest
	References


