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Abstract 
Daylight harvesting is a well-known strategy to address building energy efficiency. However, few simplified tools can evaluate its dual 
impact on lighting and air conditioning energy consumption. Artificial neural networks (ANNs) have been used as metamodels to predict 
energy consumption with high precision, few input parameters and instant response. However, this approach still lacks the potential to 
estimate consumption when there is daylight harvesting, at the ambient level, where the effect of orientation can be noted. This study 
investigates this potential, in order to evaluate the applicability of ANNs as a tool to aid the architectonic design. The ANNs were 
approached as metamodels trained based on EnergyPlus thermo-energetic simulations. The network configuration focused on 
determining its simplest feasible form. The input parameters adopted as the main variables of the building envelope were as follows: 
orientation, window-to-wall ratio and visible transmission. The effects of the encoding of orientation as a network input parameter, the 
number of examples of each variable for network training and changing the parameters used for the training were evaluated. The 
networks predicted the individualized consumption according to the end use with errors below 5%, indicating their potential to be applied 
as a simplified tool to support the design process, considering the elementary variables of the building envelope. The discussion of 
results focused on guidelines and challenges to achieve this purpose when contemplating the broadening of the metamodel scope. 

© 2021 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction
Daylight is a renewable resource and it can be used in order to save 
electrical energy in buildings [1,2]. Even with the advent of light-
emitting diodes (LEDs), lighting is still responsible for around a 
third to an eighth of the energy consumption in residential 
buildings and a third in commercial constructions [3]. In the case 
of commercial buildings, where control strategies are more easily 
applied, the potential for daylight harvesting is reinforced by the 
business schedule coinciding with the availability of daylight 
[4,5]. However, for the optimization of its use, the designer must 
make the appropriate decisions in the design conception [6]. 
Decisions related to the orientation and dimensioning of the 
openings are fundamental for the success of daylight harvesting 
strategies implemented in the design stage [7]. Thus, the designers 
need to be provided with reliable tools to aid them in the beginning 
of the designing process when information is still scarce. The main 

challenge associated with these tools is considering the dual 
impact of daylight harvesting on the lighting and air conditioning 
energy consumption. 

In recent decades, the evolution of technological has impacted 
the development of computer resources for the evaluation of the 
energy performance of buildings [8,9]. This has enabled complex 
thermo-energetic simulations to be carried out more efficiently 
allowing, as a result, the development of simplified tools based on 
these simulations [10-14]. In general, tools based on pre-simulated 
cases are divided into applications with graphic interfaces [10,11] 
and metamodels based on statistical [13-16] or computational 
techniques, such as the artificial intelligence [17-19]. 

Regarding the applicability of this class of tools, the freedom in 
the definition of the input parameters is restricted to the range of 
the pre-simulated set; however, they deliver instantaneous 
responses and do not require specialized expertise. The main 
advantage is that they originate from the simulation of the annual 
thermo-energy, based on the climate, and thus the total effect of 
daylight harvesting is considered. This is because they consider 
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the balance between light and heat originating from openings, 
along with the variation in the heat dissipated by lamps depending 
on their use according to the availability of natural light [20].  

In this context, studies on metamodels aimed at estimating the 
energy performance of buildings have increased [21-24]. On a 
smaller scale, there are studies in which daylight harvesting has 
been incorporated [25-27]. Regarding daylight, there are 
applications regarding operation of shading devices [28], of 
lighting system [29] and prediction of daylight sufficiency [30] 
based on illuminance simulations. Several techniques which make 
use of artificial intelligence (AI) have been employed for the 
metamodeling of energy performance, and many of these involve 
the use of artificial neural networks (ANNs) [31,32]. ANNs are 
computational techniques inspired on biological neural networks 
with a nonlinear approach where AI is employed to represent or 
approximate systems [33]. These techniques have also been 
considered promising for the modeling of the energy and lighting 
performance of buildings, based on measured data [34]. In the 
context of natural lighting, this modeling type is usually employed 
in order to estimate luminance [35]. 

Notable abilities of ANNs are that they can be used to model 
nonlinear functions, allow a high degree of generalization, require 
only small amounts of initial information and provide fast 
responses. However, a significant challenge associated with their 
application is that they are ‘black box’ models, and their internal 
structure is unknown [36]. ANNs are comprised of interconnected 
neurons and their learning is correlated to the synaptic adjustment 
process. It is because of this process that they are characterized as 
black box models. Thus, their optimization is limited to the 
analysis of the relation between their inputs and outputs as well as 
their architecture and training parameters [37]. When applied as a 
metamodel, it is important to evaluate the capacity of the ANN to 
carry out elementary tasks of computational simulation, to ensure 
the reliability of the results [36]. 

On reviewing the literature, it can be noted that there is a lack 
of studies on the potential use of ANNs to estimate the impact of 

daylight harvesting on the energy consumption taking into account 
the effect of orientation. This is because most authors carried out 
simulations using the traditional “core and shell” thermo model, 
where consumption is based on the 5 grouped thermo zones, thus, 
the ANNs were trained with the sum of data from all of them, not 
allowing to verify the sensitivity of the networks to the effect of 
each one of them individually [25]. This mitigates the influence of 
orientation, which is fundamental for the performance of natural 
lighting. This leads to an important limitation in our knowledge 
regarding the potential of applying ANNs to obtain estimates 
involving daylighting. Differently from thermal analysis, daylight 
analysis takes place at the environment level, so it is essential that 
a simplified tool aimed at estimating the potential for using 
daylight to save energy is sensitive to the impact of the orientation 
of the environment openings. Buildings located in the urban fabric 
usually have larger openings on the main facades, facing the 
streets, and smaller ones on the facades facing the other 
boundaries of the site, as the sides and the rear. The shape of the 
building and its implementation on the site can also mean that 
certain orientations present greater potential for taking advantage 
of daylight than others. As an example, Fig. 1 shows two 
commercial buildings with similar built-up areas and their main 
façades face the same street. However, their potential for daylight 
harvesting varies depending on the area of the façade openings and 
their respective orientations. 

Moreover, the studies in which only one thermal zone was 
adopted present limitations regarding the test method, since the 
accuracy of the networks was verified employing a percentage of 
the parametric dataset. Although this constitutes a novel 
combination, the variable values had been previously presented to 
the network [38]. Thus, in the study reported herein, ANNs were 
investigated with regard to their potential use in the metamodeling 
of the energy consumption of buildings with daylight harvesting, 
at the ambient level, where the influence of orientation can be 
noted. 

 
Fig. 1. Example of similar buildings for which the daylighting performance is altered by orientation. 
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This work forms part of the development process aimed at 
obtaining a simplified tool to assist architects in decision making 
in the early stages of a design project. The content of this article 
forms the basis for this development process and can be extended 
to other ANN applications involving daylighting. At this stage, the 
aim was to investigate the sensitivity of ANNs with regard to 
modeling the effect of orientation on energy consumption when 
there is daylight harvesting, elucidating important aspects of their 
configuration and the generation of the database for their training. 
In the context of developing a simplified tool, the results reported 
herein could serve as a basis for the development of other more 
complex models, with scopes encompassing formal, constructive 
and building context aspects. Once trained, ANNs can be used 
easily through a web interface, where inputs are typed in and 
outputs are returned instantly, enabling its use by professionals 
with different degrees of expertise. 
 
2. ANNs as metamodels 
Artificial neural networks trained with data obtained through 
simulation are referred to as metamodels because they are 
computational models based on other models, i.e., those used by 
the simulation program [40,41]. In thermo-energetic simulation, 
mathematical and statistical models based on the observation of 
the physical phenomenon are used, which relate input and output 
data. The most widely used metamodels make use of empirical 
regression, where the constants attributed to the independent 
variable in order to generate a dependent variable are obtained 
through multivariable regression, applying statistical models [15]. 
Similarly, for the ANNs, the generation of these constants (the 
weights) arises from relations between stimuli and targets, uses 

computational models and occurs through a nonlinear 
combination of these stimuli. The weights are defined through 
synaptic adjustment between neurons and will be dependent on the 
architecture and training configurations of the network. 

The basic structure of an ANN is the neuron. Haykin [33] 
defines the artificial neuron as a mathematically simple processing 
unit, since it receives one or more inputs, which have an associated 
synaptic weight, and transforms them into outputs. The neuron is 
comprised of a summation function1, responsible for the effective 
input calculation for the neuron and an activation function2, which 
transmits the output signal. Initially, the synaptic weights are 
randomly defined and are adjusted according to the learning 
algorithm3. The knowledge of the network is represented by 
synaptic weights, which determine the importance of each input. 
The influence that each input will have on the output increases 
according to the degree to which the synaptic connection is 
stimulated4. 

Synapses are characterized by a weight (w), which is initially 
random, and this represents its intensity (Fig. 2). The weight wkj 
multiplies the signal xj, at the input of the synapse j, connected to 
the neuron k. The result of this operation is submitted to a 
threshold (θ), which is associated with the activation function. The 
type of activation is selected in such a way that it softens the 
updating of the weights [42]. The threshold is fundamental, since 
it defines whether or not the signal will be propagated. If the ʋk 
value is higher than the threshold, the weight wkj will be positive 
and the neuron will be active (excitatory action) and if it is lower 
than the threshold, the signal will be negative and the neuron 
output will remain inhibited (inhibitory action). 

 
Fig. 2. Multilayer perceptron neural network: error backpropagation algorithm. 

 1 Summation function: sums the input signals received at the respective synapses (weights) of the neuron. 
 2 Activation function: restricts the output amplitude of a neuron. 
 3 Learning algorithm: can be defined as a preestablished set of well-defined rules for the solution of a learning problem [33]. 
 4 Synaptic connection: synapses are elementary structural and functional units which mediate the interactions between neurons. In neural organization, a synapse is a 

simple connection which can excite or inhibit a receptive neuron, but not both [33]. 
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The way in which neurons are structured in the neural network 
is strongly related to the learning algorithm employed to train it 
[33]. The learning algorithms determine the rules to be applied for 
the learning process. There are several typologies of ANNs; 
however, they can be grouped into two basic classes: (i) non-
recurrent and (ii) recurrent [42]. The non-recurrent ANNs are said 
to be “without memory” because they do not have re-feeding of 
their outputs to their inputs. These ANNs are structured in one or 
more layers. Multi-layer feed forward networks are distinguished 
by the presence of hidden layers. Their function is to intervene in 
a useful way between the input and output of the network, enabling 
the extraction of high order statistics5 [33]. 

The network architecture adopted in this study was non-
recurrent and feedforward through multiple layers with the 
adoption of the multilayer perceptron (MLP). The size of an MLP 
ANN is determined empirically and the heuristic adopted should 
consider the power of convergence and the generalization of the 
network [48]. The learning process applied to MLP networks is 
supervised and the error backpropagation algorithm is used, as 
seen in Fig. 2 [33]. 

The error backpropagation algorithm is based on a learning rule 
which seeks to correct the error during the training phase, 
originally the delta rule or gradient descent. Its action consists of 
two steps through different ANN layers: propagation and 
backpropagation. As described by Haykin [33], during 
propagation a pattern of activity is applied to the sensor nodes of 
the network and the effect propagates layer by layer, producing a 
set of outputs as the real response of the network. In this step, the 
synaptic weights are all fixed. During the backpropagation, the 
weights are adjusted according to the error correction rule. In the 
application of gradient descent, the distance between the expected 
result and the measured result, and also the error direction, are 
verified employing the mean square error (MSE). Based on the 
MSE, the synaptic weights are adjusted in order to reduce this 
distance. On repeating this process, the error tends to be reduced. 

In addition to gradient descent, this study addresses two other 
rules: Levenberg-Marquardt and Bayesian regularization. The 
selection of these rules was aimed at achieving more efficient 
training, since the main criticism of gradient descent is related to 
the training time, and also avoiding overfitting. 

The Levenberg-Marquardt method of numerical optimization is 
also an error correction rule, developed for the optimization and 
acceleration of convergency of the error backpropagation 
algorithm [43]. It is also based on the least-squares method; 
however, it proposes a hybrid solution with properties of the 
gradient descent algorithm and the Gauss-Newton interactive 
method. The former is used in considering the slope of the error 
surface while the latter is used in considering the curvature of this 
surface [44]. The Levenberg-Marquardt algorithm was developed 
in order to address the speed of second-order training without 
having to calculate the Hessian matrix [45]. It approximates the 
Hessian matrix employing a Jacobian matrix, which can be 
calculated through less complex methods. Its rule for the updating 
of synaptic weights was proposed by Levenberg in 1944 and 
adapted by Marquardt in 1963 [46]. In comparison with gradient 
descent, it is a faster algorithm, but it can become computationally 

unviable in the case of networks with many synaptic connections 
[43]. 

The application of the Bayesian regularization was proposed by 
MacKay [48] and it adjusts the synaptic weights of the network 
and the bias using the Levenberg-Marquardt algorithm. This 
technique was adopted in this study with the aim of improving the 
generalization of the network and avoiding overfitting. The 
objective of this rule is to decrease the values of the weights in 
order to improve the behavior in the interpolation. In the process, 
a regularization term is included in the objective function in such 
a way that the estimation algorithm makes the irrelevant 
parameters converge to zero, thus reducing the number of effective 
parameters employed in the process [49]. 

In this rule, it is assumed that weights and bias of the network 
are random variables with specific distributions. The 
regularization parameters are related to unknown variances 
associated with this distribution and can be calculated through 
statistical techniques [45]. According to Ferreira [50], the rule uses 
Gaussian approximation to the probability a posteriori, which 
enables an automatic estimation of the regularization parameter. 
This avoids the need for the use of a validation set, allowing all of 
the data to be employed for the model training. As a disadvantage, 
the technique assumes a high number of approximations and 
hypotheses through the training process, many of which can not 
be verified in practical applications [50]. 
 
3. Method 
To achieve the objective of the study, the elementary variables of 
the building envelope that influence the natural lighting and 
energy consumption were considered. Previous studies indicate 
that the window-to-wall ratio (WWR) and the visible transmission 
(VT) are the variables with the greatest impact [39]. Thus, the 
variables selected for this investigation were orientation, WWR 
and VT. Besides the relevance of the variable, another aspect 
considered was its scale, since the scale of the variable orientation 
is cyclical. The WWR and VT operate on a continuous scale, 
although they represent different properties of the natural light 
source. Lastly, despite the known relevance of solar protection 
devices to control glare and heat gain, the presence of these 
elements was not considered at this stage of the tool development. 
This decision was aimed at avoiding interference in the 
observation of the response of the networks to the disturbance of 
the variable studied and, as a result, the evaluation of their 
potential to represent the effect on the energy consumption of the 
building. 

The ANNs were trained with data generated by EnergyPlus v. 
7.2 [52] thermo-energetic simulations. The performance of the 
metamodels was assessed by comparing the results predicted by 
the ANNs with the original thermo-energetic simulation results 
[53]. Evaluations were carried out with regard to the encoding of 
the orientation as an input variable of the networks and also to the 
number of examples required for the learning and the optimization 
of training parameters. A systematic research study was 
conducted, progressively, in which the result of each analysis 
determined the nature of the next one. 

 

 5 High order statistics: based on statistical measures of high order, usually above third order (implicit and explicit), presenting greater immunity to Gaussian noise [47]. 
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3.1. Database: sampling, parameterization and energy 
simulations 
The database presented herein consists of parametric models 
derived from interactions using only one thermal zone, aiming to 
compute the effect of orientation (Fig. 3). The parametric 
combinations included variations in the values for orientation, 
WWR and VT, as shown in Table 1. The minimum and maximum 
values for each variable were chosen to avoid the ANN 
extrapolation, as shown in the following sections. The other values 
were interpolated aiming at a uniform distribution among the cases 
of the training set. The sampling was directed, and the values for 
the key variables were selected according to the investigation 
stage.  

The thermal zone had a length of 16 m, width of 8 m and floor-
to-ceiling height of 3 m, with a strip window along the larger 
dimension, and is hypothetically located in a commercial building. 

The space dimensions were defined to minimize an EnergyPlus 
limitation, which maximizes the effect of daylight reflections in 
deep rooms [40]. Table 1 shows the thermal properties of the 
building and the space pattern of use and occupancy, which was 
not parameterized. The building construction features are 
representative of the Brazilian building stock [54,55]. The location 
was fixed (Florianópolis, Santa Catarina State, Brazil) in order to 
remove the influence of the building location.  

It was considered that all the lighting power installed (1203.2 
W) was controlled by an ideal linear dimming system that switches 
the lights off completely when the minimum dimming point is 
reached. The lighting system is composed only of general lights 
and the lighting power is equally divided by two daylighting 
control sensors, located as shown in Fig. 3. The daylighting 
performance was simulated through the split-flux method (object: 
Daylighting: Controls / Detailing type: detailed / Lighting control 

 
Fig. 3. Floor plan of the hypothetical environment associated with the thermal zone. 
 
Table 1. Features of the thermal zone. 

Parameterized Variables  

Orientation [°] 0°, 15⁰, 22.5, 45°, 67.5°, 90°, 112.6°, 135°, 145⁰,157.5°, 180°, 202.5°, 225°, 247,5°, 260⁰, 270°, 
292.5°, 315°, 320⁰, 337.5°, 359° & 360° 

WWR [%] 20%, 35%, 40%, 50%, 65% 70% & 80% 
VT [%] 25%, 45%, 54%, 57%, 74%, 88% & 91% 
Non-Parameterized Variables  
Thermal transmittance [W/(m²K)] Walls 2.47 

Roofing 2.42 
Window 5.81 

Thermal capacity [KJ/(m².K)] Walls 200 
Roofing 187 

Solar absorptance Walls 0.65 
Roofing 0.70 

Occupation (m²/person) - 16 
Internal gains (W/m²) Lighting 9.4  

Equipment 9.7 
Period of use (h) (commercial building) Occupation  10 (8:00-18:00) * 

Lighting 10 (8:00-18:00) * 
Equipment 10 (8:00-18:00) *  

Characteristics of the air conditioning system Type Window unit 
Set point air temperature  18°C - 24°C 
Cooling capacity (BTU/h) Ideal for prototype 
COP (Wthermal/Welectric) 3.15 

Note: *100% occupancy, use of lighting and equipment during the period mentioned and nil outside that period. 
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type: Continuous Off). The Daylight reference illuminance was 
500 lux.  

The model parameterization was carried out using an Excel 
spreadsheet macro, adapted from Westphal [56], which combines 
the variables, assembles *.idf files from EnergyPlus, triggers the 
simulations, and records the results. As an output of the 
simulations, the energy consumption was obtained for each end 
use. The results of the simulations were analyzed by orientation 
aiming to identify possible difficulties posed to the ANN learning 
process. 

 
3.2. The metamodels 
3.2.1. ANN training 
The neural networks were generated in two programs: EasyNN-
plus [57] and MATLAB [58,59]. EasyNN-plus was used for the 
network architecture configuration and by default it uses gradient 
descent. It was chosen because programming is not involved, and 
it features a tool that indicates the number and the size of the 
hidden layer [60]. For the analysis of the network optimization we 
used MATLAB, allowing experimentation with other learning 
rules, that is, the Levenberg-Marquardt [37] and Bayesian 
regularization [61]. 

Multiple training of the same dataset was carried out. In this 
study, 5 to 10 neural networks were trained for each investigation, 
allowing us to observe trends in the precision of the network’s 
predictions. The data was divided into 80% for training and 20% 
for testing. When applicable, 10-20% of the training dataset was 
allocated to the validation dataset. 

As an activation or transfer function, the linear, the logarithmic-
sigmoidal6 and the tangent-sigmoidal7 functions were tested 
because of their good applicability [62,45]. The input layer 
consisted of variations in the three variables investigated: 
orientation, WWR and VT. The output layer was composed of four 
building energy performance variables: total energy consumption 
and consumption for heating, for cooling and for lighting. 

The test approach followed the recommendations of Silva [37] 
to fix the architecture and size of the network and to vary the 
training set or fix the training set and vary the network 
architecture. The parameters to control the network training, such 
as learning, momentum and minimum gradient rates, validation 
rules and stopping criteria, were defined based on the software 
default values, data in the literature and experimentation, 
according to each analysis. 

 
3.2.2. ANN performance analysis 
The analysis process was aimed at identifying the simplest feasible 
network, since the simpler the metamodel the greater its feasibility 
will be. The tests started from the simplest ANN that could learn 
and generalize solutions. The simplest ANN structure was defined 
using the EasyNN software tool, which allows the automatic 
generation of the smallest network that can learn patterns, 
according to input data provided by the user [60]. 

The performance evaluation was based on error analysis, 
including the mean absolute error (MAE), the mean absolute 

percentage error (MAPE) and the root mean squared error 
(RMSE). These errors were evaluated for the training and test sets 
individually, and for the total dataset. This consideration was 
made because most of the studies consulted in the literature review 
presented only the neural network errors for the total dataset. Since 
the test set is generally smaller than that used for training, the 
general mean of the network errors tends toward the training error, 
which, in most cases, is significantly lower than that of the test set, 
masking the limitations of metamodels. 

The consulted literature recommends separating a percentage 
from the dataset to test the generalization power of the trained 
network [33]. However, for metamodels based on parametric 
cases, this method may not be accurate. It is understood that this 
proposition comes from studies that use real data, such as 
biological experiments with sample collections in the field. By 
separating a percentage of the parametric combinations for the test 
set, the neural network, in a sense, has already "seen" each variable 
in that form during training, although in a different combination. 
Aiming at a more rigorous test method, cases were proposed in 
which none of the values of the input variables had been presented 
to the network during training, and these are referred to herein as 
the unseen set of cases. 

 
3.3. Analysis of the orientation input encoding 
The network architecture consisted of three nodes in the input 
layer (orientation, WWR and VT), one hidden layer with six 
neurons, and four nodes in the output layer (the four energetic 
performance parameters). The gradient descent algorithm was 
used, with validation every six cycles and a stopping criterion of 
an error below 0.001. 

For the analysis of the orientation cyclic scale encoding, three 
alternatives were tested: the azimuthal approach; the cyclical 
approach; and the azimuthal approach including 359° N. 

In the azimuthal approach, the azimuth angle was used as the 
input code for the networks, considering the four cardinal 
directions. For the cyclic approach, the encoding corresponded to 
the absolute value of the difference between the angle itself and a 
reference angle. The angle of reference adopted was 0° (north). 
The limitation of this approach is that it does not differentiate 
between the east and west facades, adopting the same input value 
for the neural network (90° in both cases). The objective of using 
the “azimuthal approach including 359° N” was to add 
information on the scale polarity. The same procedure as the 
azimuthal approach was adopted, adding cases with the 359° N-
oriented facade to the training set. 

The parametric models of the training and validation sets 
consisted of combinations of the four cardinal directions (N, S, E, 
W); three WWR values (20%, 50% and 80%) and three VT values 
(25%, 57% and 91%). For the unseen set, the three values of WWR 
and VT were combined with the azimuths of the intercardinal and 
secondary intercardinal directions and with the azimuths 15°, 
145°, 260° and 320°. In total, 180 parametric models were used. 

 

6 Logsig: MATLAB sigmoidal logarithmic transfer function. Calculates the value of the output of the neuron from the inputs of the network, that is, the value that will 
be transferred to the next layer, using a sigmoidal logarithmic function that varies between 0 and +1. It has an "S" format, being a nonlinear function. 

7 Tansig: MATLAB hyperbolic tangent transfer function. Displays the same definition as the previous function. However, it uses the sigmoidal hyperbolic tangent as a 
transfer function, which varies between -1 and +1. 
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3.4. Influence of the training sample size for the three input 
variables 
At this stage, the number of examples required for network 
training for the different key variables was explored. Thus, 
orientation, WWR and VT were assessed individually. In total, 
714 parametric cases were obtained. The same ANN architecture 
and training configurations described in section 2 were adopted. 
Three training dataset options were proposed for each of these 
variables, called Cases A, B and C. Case A was characterized by 
the smallest training set, which was progressively expanded. The 
unseen set was kept fixed, allowing a comparison between the 
performance of the three cases. 

For the analysis of the orientation variable, we adopted the 
azimuthal encoding including 359° N, as described in the previous 
section. The training set for Case A consisted of the four cardinal 
orientations and 359° N. Case B included the addition of the 
intercardinal directions to the Case A training set and for Case C 
we added the secondary intercardinal directions to the Case B 
training set (Table 2). The unseen set corresponded to azimuths 
15°, 145°, 260° and 320°. All orientation values were combined 
with the three WWR values and the three VT values used in the 
previous analysis. 

For the WWR analysis, Case A consisted of adopting the two 
extreme values of those used in the previous analysis (20% and 
80%), combined with the three values of VT and the five values 
of orientation, corresponding to the cardinal directions and 359⁰ N 
(Table 3). In Case B the intermediate value of WWR used in the 
previous analysis (50%) was added to the Case A training set. For 
Case C, the intercalated WWR values (35% and 65%) were added 
to the Case B training set. The additional WWR values in Cases B 
and C were combined with the same orientation and VT values 
used in Case A. 

The structuring of the training sets for the VT analysis was 
similar to that described for the WWR analysis. Therefore, the VT 
values were added progressively, and combined with the three 

WWR values and the five orientation values, corresponding to the 
cardinal directions and 359° N. Table 4 shows the parametric 
combinations for the three cases of the VT evaluations used for the 
training set and for the unseen set. 

 
3.5. Performance analysis of the optimized ANN configuration 
Based on the results of the previous stages, the WWR - CASE C 
training and test sets (Table 3) were adopted to assess the 
possibility of network optimization by changing its training 
parameters. Thus, the orientation values corresponded to 0°, 90°, 
180°, 270° and 359°, the VT values to 25%, 57% and 91%, and 
the WWR to 20%, 35%, 50%, 65% and 80%, totalizing 75 training 
cases. 

Regarding the training parameters of the network, an increase to 
10 nodes in the hidden layer was tested and also the optimization 
algorithms Levenberg-Marquardt and Bayesian regularization. 
The number of neurons determined for the hidden layer size 
optimization was based on tests reported in the thesis that 
originated this article [63]. Up to this point, the number of nodes 
in the hidden layer was 6, indicated by the tool in EasyNN-plus as 
the simplest network able to learn, and for the gradient descent 
algorithm the standard of the program was used. 

 
4. Results 
4.1. Characterization of energy consumption in the databases 
The results of the consumption simulations in EnergyPlus were 
plotted in point (Fig. 4) and bubble (Fig. 5) graphs and presented 
in distinct scales, due to the difference in the magnitudes of the 
results. It can be noted that for the total energy consumption (Fig. 
4(a)) that the highest amplitude of the results occurs for the 
northeast and northwest, along with the highest values, since 
Florianópolis is situated in the southern hemisphere. For the 
environment typology adopted, the end use with the highest 
consumption was cooling (Fig. 4(c)), and its distribution was 
similar to that for the total energy. In the results for the lighting 

Table 2. Parameterized values for orientation, by analysis group. 
ANN DATASET (WWR: 20%, 50% & 80% and VT: 25%, 57% & 91%) 

Training set ORIENTATION "Unseen" test set 
ORIENTATION Case A Case B Case C 

0°, 90°, 180°, 270°, 359° & 360° 

 

0°, 45°, 90°, 135°, 180°, 225°, 270°, 
315°, 359° & 360° 

 

0°, 22.5°, 45°, 67.5°, 90°, 112.6°, 135°, 
157.5°, 180°, 202.5°, 225°, 247,5°, 270°, 
292.5°, 315°, 337.5°, 359° & 360° 

15⁰, 145⁰, 260⁰ & 320⁰ 

 

 
Table 3. Parameterized values for WWR, by analysis group. 

ANN DATASET (Orientation: 0°, 90°, 180°, 270°, 359° & 360° and VT: 25%, 57% & 91%) 

Training set WWR "Unseen" test set 
WWR Case A Case B Case C 

20% & 80% 20%, 50% & 80% 20%, 35%, 50%, 65% & 80% 40% & 70% 

 
Table 4. Parameterized values for VT, by analysis group. 

ANN DATASET (Orientation: 0°, 90°, 180°, 270°, 359° & 360° and WWR: 20%, 50% & 80%) 

Training set VT "Unseen" test set 
VT Case A Case B Case C 

25% & 91% 25%, 57% & 91% VT: 25%, 45%, 57%, 74% & 91% 54% & 88% 
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consumption (Fig. 4(d)) the highest amplitude of the results was 
for the south direction, for which the consumption was higher. The 
energy consumption associated with heating (Fig. 4(b)) is very low, 
which may hinder the ANN learning process, since it diverges 
significantly from the other outputs. These results emphasize the 
diversity of the responses of the outputs to parametric variations, 
which indicates that the optimization of networks may require the 
individualization of outputs for each metamodel. 

The caption for the bubble graph of Fig. 5 adopts the orientation 
as variable 1 (color, abscissas), VT as variable 2 (color) and WWR 
as variable 3 (size). In relation to total energy, a challenge 
identified in the training of the metamodels is the consumption 
estimation for environments oriented toward the south (Fig. 5(a)) 
due to the difference in the effects of orientation on the cooling 
and lighting. In the case of cooling (Fig. 5(c)), this is the 
orientation that has the data distribution with the lowest amplitude 

   
(a)       (b) 

   
(c)       (d) 

Fig. 4. Energy consumption by orientation and end use. 
 

 
Fig. 5. Energy consumption according to the Orientation, VT and WWR. 
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while lighting has the highest amplitude (Fig. 5(d)). The inverse 
effect that an increase in the WWR has on the consumption 
associated with cooling and lighting, means that the highest total 
consumption for this orientation occurs for a small opening with 
low visible transmission (Fig. 5(a)). 

A factor that could hinder the learning of networks as far as 
cooling consumption is concerned is the effect of daylight 
harvesting on reducing the thermal load through a reduction in the 
use of the lighting system and, consequently, the thermal load 
generated by it. This variation, which would not occur if there was 
no daylight harvesting, increases the complexity associated with 
predicting the effect of the combination of WWR and VT, which 
means that the lowest consumption for WWR 20% would 
correspond to VT 88% (glass with higher solar factor) and not VT 
43%, as it occurred for WWR 50% and 80% (Fig. 5(b)). 

 
4.2. Analysis of the orientation input encoding 
To facilitate the analysis, the results were plotted in radial graphs, 
allowing the observation of the orientations that presented the 
largest errors. Figure 6 illustrates the MAPE charts for the total 
energy consumption output parameter, with the errors marked 
along the radius of the graphs. Each line corresponds to the 
average MAPE value for the 10 trained ANNs separated by the 
model characteristics, e.g., the purple line highlighted (red box) in 
the legend of Fig. 6 represents the average MAPE values for the 

models with VT 0.57 and WWR 20%, for each orientation. Filled 
circles correspond to cases in the validation set. 

In general, the errors increased for cyclic encoding in relation to 
azimuth encoding. The limitations of the cyclic approach, as 
described in Section 2.3, can be confirmed in the graph of Fig. 
6(b), since the networks presented errors of less than 5% for 
models with the east facing facade and the NE and SE quadrants 
(right half of the graph), and up to 8% for models oriented to the 
west and the NW and SW quadrants (left half of the graph). This 
asymmetry did not occur in either of the other two approaches (the 
azimuthal and the azimuthal + 359⁰ N). The cases with a west 
orientation (270°), with errors close to zero, were the cases 
presented during the training of the networks. 

The addition of orientation 359⁰ N to the azimuth approach 
significantly improved the prediction performance of the networks 
for the NW quadrant orientations. The average MAPE for all cases 
in this quadrant was halved, not only for total energy consumption, 
but also for heating and lighting (Fig. 7). The results showed that 
the networks were capable of estimating the total consumption for 
the south facade (Fig. 6(c)) in contrast with the hypothesis 
suggested in the discussions in the previous section. Although the 
MAPE of air conditioning consumption for the south surpassed 
6% in some cases (Fig. 7(a)), the greatest errors occurred for cases 
with orientation toward the north quadrants. 

 

 
  (a)       (b)        (c) 

Fig. 6. Average MAPE values for the 10 ANNs for each encoding approach: grouped by VT and WWR combination (output parameter: total energy consumption): (a) 
Azimuthal (b) Cyclic, and (c) Azimuthal + 359° N. 
 

 
  (a)       (b)        (c) 

Fig. 7. Average MAPE values for the 10 ANNs for Azimuthal + 359° N: grouped by VT and WWR combination: (a) Cooling (b) Heating and (c) Lighting. 
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4.3. Analysis of the influence of increasing the examples in the 
training set 
The box plot graphs in Fig. 8 show the results of increasing the 
number of examples for orientation, WWR and VT. In these 
graphs, the bars represent the MAPE for each output parameter 
and the whiskers represent the standard deviation of the set 
(considering 10 ANNs). 

The experiments showed that each input variable has a 
particular function regarding the relation between the number of 
examples and the performance of the networks, for each of the 4 
output variables. In relation to the 3 input variables studied, 
orientation and VT resulted in similar functions, but this was not 
the case for heating. For both orientation and VT, the curves are 
slightly accentuated. Comparatively, the function representing 
orientation is less concave compared with VT, due to the greater 
number of new examples presented to the network in cases B and 
C, as seen in Figs. 8(a) and (c). WWR presented a more 
pronounced parabola with a linear tendency to the right, as seen in 
Fig. 8(b). VT was the variable that needed fewer examples for the 
network training. It was observed that for some output variables, 
an increase in the number of examples can even reduce the 
performance of the model (e.g., cooling and total energy 
consumption when the number of VT samples is increased). The 
curves may change as the variables are combined to produce new 
parametric models. In this case, new quantities of examples may 
be required for the network to learn the patterns. 

In general, the results in Fig. 8 showed that the networks 
estimated the total energy consumption with higher precision and 
the heating energy consumption with lower precision. The 
existence of four outputs influences the adjustment of the weights 
of synaptic connections that occur during the network learning 
process. This interrelation may have benefited the estimate of total 
energy consumption, which conceptually is the result of the sum 
of the other output variables. However, it should be noted that for 
the black box models there is no explicit relation between the 
physical phenomenon and the model estimate. Although they 
show a relation, the outputs are, to some extent, independent. 
Thus, it can not be expected that the errors obtained for the total 
energy consumption correspond to the average or the sum of the 
errors for the other variables. The errors are associated with the 
network power to estimate that output. 

The magnitude of the errors obtained for the heating energy 
consumption, being significantly higher than those of the other 

outputs, is due to the absolute values employed to train the 
networks. These values were extremely low due to the Brazilian 
climatic conditions, lower than 1.4 kWh/m2/year. On the other 
hand, the consumption values were limited to 69 kWh/m2/year for 
total energy, to 25 kWh/m2/year for cooling and to 20 
kWh/m2/year for lighting. Therefore, even though the percentage 
errors are much higher in relation to the other variables, they are 
insignificant in terms of absolute consumption. 

It can be observed in Fig. 8(a) that the errors for the heating 
energy consumption show a progressive increase from Case A to 
Case C. This variation was not considered representative, since the 
values obtained for the heating consumption were practically null. 
Furthermore, the difference between the magnitudes of the 
consumption of the output variables may hinder the learning of the 
networks and also may explain the divergences between the error 
patterns of the four output variables. 

Regarding the orientation variable, an increase in the number of 
examples did not improve the network performance to the point of 
justifying the increased computational effort required for the 
energy simulations. When evaluating the effects of including the 
new examples for each output variable separately, the most 
significant error reductions occurred for cooling and lighting, from 
3.3% to 2.9% and from 4.7% to 4.2%, respectively. These 
variations were observed in the errors for cases oriented to the 
northern quadrants (NE and NW) and correspond to the mean 
MAPE of the 10 trained ANNs. When evaluated individually, it 
was possible to observe that the improvement in the network 
performance was due to a reduction in the errors associated with 
the outliers. 

Overall errors were also verified considering the mean of all 
output variables, for the training and test sets. An increase in the 
number of samples for the orientation worsened the training set 
performance, increasing the overall MAPE from 4.8% for Case A, 
to 5.16% for Case B and 5.36% for Case C. On the other hand, for 
the unseen set, the overall MAPE decreased from 5.27% for Case 
A to 5.03% for Case B and increased to 5.69% for the Case C 
orientations. 

Increasing the number of WWR examples also led to different 
results for the training set and for the unseen set. For the training 
set, Case A presented the smallest errors for the 4 output 
parameters, followed by Case C and then Case B. For the unseen 
set (Fig. 8(b)), adding new examples from Case A to Case B and 
Case C improved the network performance for the 4 output 
parameters progressively. 

 
                 (a)             (b)                     (c) 

Fig. 8. Trend curves for the network error reduction with an increasing number of training cases - unseen set evaluation: (a) orientation (b) WWR, and (c) VT. 
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Likewise, an increase in the number of VT samples led to 
different results for the training set and for the unseen set. In 
general, training set errors varied very little on including new 
examples, less than 1% in absolute terms. Even so, the smallest 
errors corresponded to Case A. For the unseen set (Fig. 8(c)), in 
contrast to the WWR results, there was no uniform pattern in the 
response to the increase in samples for all output parameters. For 
cooling, the performance improved from Case A to Case B, but 
worsened from Case B to Case C. Total energy consumption, 
heating and lighting presented reductions in the errors from Case 
A to Case B and from Case B to Case C. 

With regard to the individual evaluation of the 10 ANNs, a large 
variability in the performance of the different networks was 
observed for the three experiments (considering the orientation, 
WWR and VT). However, it can be observed that this variability 
is lower when one of the input variables outperforms the other. In 
this case, the disturbance of the least impacting variable does not 
cause significant changes in the output variables. To exemplify 
this finding, Fig. 9 illustrates the MAPE for each of the 10 ANNs 
considering the VT investigation examples. Here, the networks 
were trained with the Case A set (see Table 4), for the total energy 
consumption output parameter, considering only the cases 
oriented to the north, grouped according to the three WWR values. 

 
Fig. 9. Performance of the 10 ANNs for the total dataset of Case A - VT (north orientation, output parameter: total energy consumption): (a) WWR 20% (b) WWR 
50%, and (c) WWR 80%. 
 

 
Fig. 10. Performance of optimized ANNs by output – unseen set: (a) MAE (b) RMSE, and (c) MAPE. 

http://creativecommons.org/licenses/by/4.0/


266 R. W. da Fonseca & F. O. R. Pereira / Journal of Daylighting 8 (2021) 255–269 

2383-8701/© 2021 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

When the WWR is expressive (80%), the VT variation has a lower 
impact on consumption and therefore the results estimated by the 
networks presented a more constant error pattern (Fig. 9(c)). This 
trend in the behavior was repeated for the other three orientations 
evaluated. 

 
4.4. Optimized configuration for the ANNs 
Increasing the number of neurons significantly improved the 
performance of the network for all of the output parameters. The 
series of blue bars in Figs. 10(a) and (b) corresponds to the same 
network shown for Case C in Fig. 8(b), the network with 6 nodes 
in the hidden layer employing the gradient descent algorithm. The 
series of red bars in Figs. 10(a) and (b) shows the results for the 

network of the same algorithm, however with 10 neurons in the 
hidden layer. 

The performance of the Levenberg-Marquardt and Bayesian 
regularization algorithms was slightly higher than that of the 
gradient descent algorithm. The Bayesian regularization showed 
smaller errors than the Levenberg-Marquardt algorithm for the 
cooling and lighting and greater errors for the total consumption 
and heating. Although the difference between the algorithms in 
terms of performance was small, the processing speed varied 
considerably. The processing for the two aforementioned 
algorithms was more rapid (less than 10 min) compared with the 
gradient descent algorithm (1.0-2.5 h). The balance between 
performance and processing speed led to the adoption of the 
Bayesian regularization algorithm being considered most 
advantageous for this metamodel. 

 
Fig. 11. Energy consumption of two geometries: deep and wide, for the 17 orientations. 
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5. Discussion 
In this initial stage of the construction of the simplified tool, 
aspects related to the modeling of the building's orientation and 
the configuration of the ANN were approached, including the 
definition of the training set. The investigation reported herein 
demonstrates the relevance of the parameters of network training 
and the difficulty associated with establishing a set of examples 
for the training of a black box model, since an increase in the 
number of examples does not necessarily reflect in its optimization. 
In architecture, the design possibilities are endless and, although 
technology allows the simulation of large sets of data, limitations 
are inevitable. A notable contribution of this study is that it 
provides an indication of how to approach the variable orientation 
as an input parameter of the metamodel. 

The hypotheses raised by the analysis of the simulated database 
were not confirmed. The greatest errors were associated with the 
orientations which receive more solar radiation, that is, the north 
quadrants rather than the south quadrants, as expected. This leads 
to the conclusion that for these networks, which are black box 
models, when there is daylight harvesting the effect of the relation 
between WWR and VT on the energy consumption does not 
hinder the modeling (whereas it could for white and gray box 
models). 

The results of this study indicate that ANNs have the potential 
to predict consumption when there is daylight harvesting, 
however, this is based on a restricted range of architectonic 
variations focused on the building envelope. The next steps for the 
development of the simplified tool should address larger 
parametric sets, which incorporate other key variables of the 
building described. The first expansion of the metamodel should 
address the exploration of environments with other geometries, 
since the effect of WWR on energy consumption may differ 
greatly for environments with the same floor area, varying only 
the proportion between width and depth, as shown by the 
comparison in Fig. 11. It can be noted that the complexity of the 
problem increases when the geometry in relation to the orientation 
is added as a variable. Both models have the same area, volume 
and lighting plan and were compared considering the same WWR 
values. The difference in the profiles of the curves for total 
consumption, heating, cooling and lighting presents a potential 
challenge in dealing with different geometries with different 
orientations in modelling with ANNs. 

The sequence of the expansion of the metamodel scope will 
involve the incorporation of other façade elements and the 
architectural configuration of the environments, followed by 
elements that describe the context of the building's insertion, such 
as obstructions caused by the surroundings and the geographic 
location. In these stages, a migration from the EnergyPlus program 
to others based on Radiance is foreseen. EnergyPlus was adopted 
in the initial stages of the development of the tool to allow greater 
agility in the generation of the database and to investigate the 
details of the application of ANNs to this process. However, once 
the details of the network configuration have been selected, 
physical complexities will be incorporated into the model, 
requiring more accurate daylighting simulation programs. 

It should be noted that the results obtained so far do not apply 
only in the context of the construction of the simplified tool that 
motivated this study, but to other similar applications where ANNs 
are used. Although the simulations were generated in the 

EnergyPlus program by the split-flux method, the choice of a 
simple geometry that minimizes its limitations allows the results 
obtained on the network metamodeling potential to be extended to 
other simulation methods. 
 
6. Conclusions 
The results obtained in the first stage of the development of a 
simplified tool for estimating the impact of daylight harvesting on 
the energy consumption of buildings are reported in this paper. 
The potential of ANNs to model the effect of orientation and 
important aspects of their configuration were investigated. The 
results reported herein contribute to improving our understanding 
of how ANNs, as black box models, respond to the effect of 
orientation on the energy consumption when there is daylight 
harvesting. Feed forward networks with supervised learning, and 
the use of the error backpropagation algorithm, were the subject 
of this study. The networks were analyzed considering the 
elementary variables of the building envelope: orientation, WWR 
and VT. It is shown that the networks estimated the individualized 
consumption by orientation with errors below 5% for new cases. 
The analysis of the input variables revealed that the encoding on a 
cyclical scale of the orientation must indicate its beginning and 
end. It also showed that the 3 variables require different amounts 
of examples for the network training and highlighted the relevance 
of the architectural configurations and the training of the networks 
with regard to their performance. These results suggest that the 
ANNs are potential techniques for application in the development 
of simplified tools, in order to aid the designer and maximize the 
daylight harvesting, considering the particularities of each 
orientation. The evidence regarding the precision of consumption 
estimates obtained considering elementary variables of the 
building envelope, the characterization of the scale associated with 
the orientation and the singular approach to the variables, 
contribute as guidelines for the production of new metamodels 
with a broader scope. 
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