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Abstract 
Application of machine learning methods as an alternative for building simulation software has been progressive in recent years. This 
research is mainly focused on the assessment of machine learning algorithms in prediction of daylight and visual comfort metrics in the 
early design stages and providing a framework for the required analyses. A dataset was primarily derived from 2880 simulations 
developed from Honeybee for Grasshopper. The simulations were conducted for a side-lit shoebox model. The alternatives emerged 
from different physical features, including room dimensions, interior surfaces’ reflectance factor, window dimensions, room orientations, 
number of windows, and shading states. Five metrics were applied for daylight evaluations, including useful daylight illuminance, spatial 
daylight autonomy, mean daylight autonomy, annual sunlit exposure, and spatial visual discomfort. Moreover, view quality was 
analyzed via a grasshopper-based algorithm, developed from the LEED v4 evaluation framework. The dataset was further analyzed with 
an artificial neural network algorithm. The proposed predictive model had an architecture with a single hidden layer consisting of 40 
neurons. The predictive model learns through a trial and error method with the aid of loss functions of mean absolute error and mean 
square error. The model was further analyzed with a new set of data for the validation process. The accuracy of the predictions was 
estimated at 97% on average. The View range metric in the quality view assessment, mean daylight autonomy and useful daylight 
illuminance had the best prediction accuracy among others respectively. The developed model which is presented as a framework could 
be used in early design stage analyses without the requirement of time-consuming simulations. 

© 2021 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction
Due to the binding effect on occupant wellbeing and energy 
savings, daylight and visual comfort assessment have been within 
the comprehensive discussion of sustainable building design in 
recent years [1]. During previous years, lighting energy has 
consumed up to 20% of the total electricity consumption of the 
buildings [2], and office buildings were responsible for more than 
20% of this energy [3]. Nowadays 7% of energy demand in 
buildings is for lighting; thanks to the progress in daylight 
standards and regulations [4]. Thus, improving the mentioned 
efficiency via controlled use of natural daylight inside buildings, 
known as daylighting [5], seriously affects the lighting and cooling 
energy demand, especially in harsh climates [6]. Daylight also 
provides an array of health and comfort benefits that make it 

essential for buildings’ occupants [7]. Besides, contact to the 
outside living environment is an important psychological aspect 
linked to daylighting. Windows could supply information of 
orientation, give experience of weather changes and allow us to 
follow the passage of time over the day [8]. Therefore, the size and 
position of window systems need to be considered carefully in 
relation to the eye level of the building occupants [9]. 

Successful daylighting requires design considerations at earlier 
stages of the building design process. This will reduce the costs of 
any possible design change and increase the ability to change the 
design [5-7]. Different metrics that should be considered in 
providing acceptable daylight and visual comfort include daylight 
sufficiency, glare, and quality views altogether. Historically 
daylight predictions have been conducted via simple methods, i.e., 
diagrams, protractors, scale models, mathematical formulas, and 
rules-of-thumb [10]. In recent years, because of the progress of 
computer processing, newly introduced methods, named white-
box, extended the former approaches [11]. Constant efforts have 
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been made to integrate all available techniques into the design 
process, and climate-based daylight metrics are now widely used 
as the most accurate indicators of the overall daylight situation of 
the spaces; however, the tools and applied professional methods 
that predict daylighting performance in buildings are not still 
completely practical [12]. Time-intensive CBDM can be a 
challenge when assessing the daylight performance for numerous 
design alternatives, especially in parametric design environments 
when designers aim to push for daylight optimization [13]. 
Besides, architects do not prefer to spend time to include what they 
assume complex methods into their practices [14]. 

Artificial intelligence (AI) and ML applications are achieving 
significant successes in many fields nowadays. Predictive models 
that are built on MLAs, called black-box, have been receiving 
recognition from the building design community and stakeholders 
because they are able to handle complex problems in a short time 
with high accuracy. These methods are based on algorithms that 
learn the mathematical relationship between a dataset’s 
parameters and construct a mathematically-fit model. Much useful 
information about the data could then be extracted without the 
need for time-consuming simulations or calculations. The 
application of ML methods in daylighting prediction is still 
underexploited [10], however an increasing number of studies 
with different objectives such as location, building type, output 
parameters, and selected algorithm, have been published over the 

past years. Studies use ML for daylight and visual comfort metrics 
prediction and focus on comparison between different ML 
algorithms regarding their accuracy and computational cost. 
Muhammad Ayoub [15], in a study on the application of MLAs in 
daylight metrics prediction, quantified the daylighting and energy 
consumption of residential buildings with different physical 
configurations and facades. The calculated metrics in daylight are 
sDA and ASE. The results indicate insignificant errors and are in 
agreement with the simulation results. In another research, 
Radzisewski and Kaczynski [16] evaluate ANN model in early 
design stages on various office models, via DF, DA, and Daylight 
Glare Probability (DGP), presenting a design tool with acceptable 
results in daylight metrics calculations. However, its performance 
is considered limited because of the narrow set of variants for the 
training of the MLA, similar to the conclusion of other researches. 
Moreover, a study by Lorenz et al. in 2020 indicates that an ANN 
could predict DA levels in three different stages including single 
design space, detailed design in windows configurations, and 
effects of shading devices. All three stages of the research showed 
acceptable accuracy. 

In similar research, Chatzikonstantinou and Sariyildiz in 2015, 
evaluated three algorithms, including ANN, K-nearest, and 
random forest, focusing on DA and DGP. The results accordingly 
indicate that the approaches, which are based on ML, achieve a 
favorable trade-off between accuracy and computational cost. The 
authors suggest that they provide a worthwhile alternative for 
performance evaluations during architectural conceptual design. 

ML-based methods are applied for predicting not only dynamic 
metrics calculations but also static illuminance-related metrics. 
Liu et al. [17] and Becalli et al. [18] have assessed the performance 
of MLAs in predicting actual illuminance values. The firstly 
mentioned research has offered a review that is focused on the 
accuracy analyzes of different models. The analyses were 
conducted for different types of buildings and in different 
temporal granularities. Two MLAs were compared in terms of 
their complexity and accuracy, both confirmed the accuracy of the 
predictions as in the acceptable range. 

The studies with the same idea of comparing and assessing the 
algorithms’ performance have grown in number recently; the latest 
of them are presented in Table 1. Mohammad Ayoub, in 2020, has 
reviewed previous researches in this field in the following 
categories: procedure of prediction, MLAs, data sources, sizes and 
temporal granularities, and evaluation metrics. According to the 
review, the most common used algorithms are ANN, MLR, and 
SVM, considering regression as the most mentioned problem to 
solve. Besides, the most used output parameters are illuminance 
values, DA, sDA, and DGP, respectively. 

Nomenclature 
ASE Annual Sunlit Exposure 
AI Artificial intelligence 
ANN Artificial Neural Networks 
CBDM Climate-Based Daylight Modelling 
CGI CIE Glare index 
DA Daylight Autonomy 
DF Daylight Factor 
DGP Daylight Glare Probability 
sVD Spatial Visual Discomfort 
sDA Spatial Daylight Autonomy 
UDI Useful Daylight Illuminance 
ML Machine Learning 
MAE Mean Absolute Error 
WWR Window to Wall Ratio 
MLR Multiple Linear Regression 
SVM Support Vector Machine 
MLA Machine Learning Algorithm 
MSE Mean Square Error 

Table 1. Some of the Latest Studies on MLAs application in daylight and visual comfort parameters prediction. 
Author(s) Year Building type Selected algorithm Output Parameter 

[19] 2021 Office ANN UDI, DA 
[6] 2019 Residential MLR sDA, ASE 
[16] 2018 Office ANN DF, DA, DGP 
[20] 2018 -Not Specified- ANN DA 
[17] 2019 -Not Specified- ANN/SVM Illuminance values 
[18] 2018 Laboratory ANN Illuminance values 
[21] 2017 Educational ANN DGP, CGI 
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Despite the vital importance of providing proper views to the 
outside, the focus of previous researches was mainly on windows’ 
daylighting effects, and outside views are rarely considered in 
window size, shape, pattern and placement design. Thus, 
analyzing the view quality in spaces along with daylight and glare 
assessments could be useful in early design stages. Besides, the 
previous researches and studies of this field have mostly 
considered a few number of performance metrics and do not 
thoroughly cover the assessment of ML-based methods in varied 
metrics of daylight and visual comfort.  

Involving performance assessments from the beginning will 
reduce the costs of changes. Despite providing a precise prediction 
of building performance, simulation-based methods hinder rapid 
initial approximations during the early design stages, where many 
vital decisions are made. Moreover, simulation programs need a 
complex set of inputs, many of which are unknown even for 
designers at the outset. In other words, the simulations cannot be 
processed until the design is progressed to an acceptable level, 
where the requisite inputs are identified. This will make difficult 
to go back and improve the preliminary design. Thus, using a less 
time consuming method rather than simulation will be 
advantageous in preliminary stages of design. Moreover, 
architects are asked to quantify their design intentions and 
evaluate their alternatives in terms of sustainable performance 
criteria while they are trained to place value in the concept of 
spatial experience and do not have the proficiency to work with 
complex simulation tools. This highlights the need for a simplified 
tool that can be used rather than simulation-based softwares and 
help architects and other decision makers to realize the 
consequences of their choices in an easily-understandable way. 
With the help of such tools designers will be aware of the 
consequences of their decisions in acceptable timeframes, realize 
which design variables are more effective and ultimately make 
more efficient choices. According to the mentioned needs, this 
research is focused on the assessment of MLA in prediction of 
daylight and visual comfort metrics in the early design stages and 
providing a practical framework based on the findings. 

The framework can be representative of space types with similar 
lighting and visual comfort needs. The main purpose of this paper 
is to evaluate the algorithm in the estimation of the mentioned 
metrics with a suitable number and variance and compare the 
algorithm’s accuracy in the prediction of different visual-comfort-
related metrics. 

Consideration of essential metrics for a comprehensive 
luminous analysis (daylight sufficiency, visual comfort and view 
quality) of indoor spaces is the main novelty of this research. This 
was a shortcoming in previous studies that were focused on 

calculation of one or two aspects of the luminous environment by 
a few number of metrics.  

For this purpose, a dataset is primarily developed based on 
simulation-derived results. The dataset is then analyzed with the 
MLA and predictive models are presented for each metric. 
Furthermore, models have been validated by comparing to 
simulation results and the accuracy of the predictions are studied. 
Finally, a framework has been introduced based on selected 
features for daylight, visual comfort and view quality assessments 
in early design stages. 
 
2. Methodology 
Machine learning is a specific subset of AI that trains a machine 
to make predictions. There are three main learning types in 
algorithms; namely, Supervised, Unsupervised, and 
Reinforcement [10]. The supervised learning approach, which was 
utilized in this study to make daylight performance assessments, 
consists of two main steps. First, a dataset was generated using 
simulation-based softwares. Second, an MLA was used to analyze 
the created dataset and form the predictive model. A new set of 
variables that did not exist in the primary dataset was utilized to 
evaluate the model’s performance in processing the new input 
data. This step included a repeated trial and error process that led 
to optimization of the MLA performance. After all, a sensitivity 
analysis was conducted by a recently introduced method named 
Shapley Additive Explanations [22] to determine which features 
have the greatest impact on each of the calculated metrics (Fig. 1). 

 
2.1. Dataset creation 
For this study, two separate datasets with sizes of 2880 and 64 are 
generated parametrically in Grasshopper, respectively as training 
and validation data. Honeybee plugin, which uses Radiance and 
Daysim for daylight analysis, was chosen for metric simulations. 
The case study is a side-lit single office zone located in Tehran 
climate (Bsk, based on Köppen–Geiger classification). 

The variables selected for the present work include space 
dimensions, interior surfaces reflectance, shading states, window 
height and sill height, orientation, and also the format of window 
divisions. These variables were chosen to cover the main 
parameters that lighting designers and architects might take into 
account during the building envelope design process. Figure 2 
shows the geometrical representation of the produced models. 
Also, some variables were kept constant, namely geographical 
location, climate conditions, occupation, and height of the space. 
The parameters and their values are shown in Table 2. 

 
Fig. 1. General schematic diagram of research methodology steps. 
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2.2. Target metrics 
All the metrics selected in this study provide a single value 
representing the overall performance of the whole space. The 
chosen metrics for daylight assessments include Mean Daylight 
Autonomy, Spatial Daylight Autonomy, and Useful Daylight 
Illuminance. Although sDA is currently employed in IES LM-83-
12 and LEED v4 recommendations for analysis of daylight 
sufficiency, it does not provide an upper limit for acceptable 
illuminance value. Thus, in this study, UDI has been added to 
inform on both useful levels of daylight illuminance, and the 
frequency of occurrence of excessive levels of daylight that might 
result in glare problems. The threshold considered for minimum 
acceptable illuminance of the space is 300lux, following the LEED 
v4. Certification and 19th topic of National Building Regulations 
of Iran [23,24]. 

The assessment of view quality was conducted based on LEED 
v.4. [23]. As mentioned in Table 3, this building certification 
system states four main factors for the evaluation of views in the 
buildings: view factor, view depth, view range, and the view 
content. The details of the calculation methods are discussed in 
[28]. According to LEED v4, if two of the abovementioned terms 

are provided for at least 75% of the space area, the room achieves 
the view credit.  In this project, the view content is not defined as 
a variable in the MLA-based predictive model formation and the 
three other factors are simulated and discussed for view 
assessment. The view content is later measured individually in the 
back-end python code which is written for the proposed 
framework interface.   

The shoebox spaces were modeled in Grasshopper for 
Rhinoceros. Radiance simulation engine via Honeybee v0.0.66 
[29] was used to calculate daylight and glare metrics. The quality 
view factors were geometrically calculated in Grasshopper (Fig. 
3). Table 4 lists the Radiance parameters that were set for daylight 
simulations. Parametric simulations were performed using Colibri, 
a plugin for Grasshopper [30]. 

 
2.3. ML algorithm development 
As mentioned before, several algorithms have been used to predict 
daylight metrics in recent studies. The most common algorithm is 
ANN with acceptable prediction accuracy [10], which is employed 
to produce the predictive model in the current research. 

 
Fig. 2. The shoebox space form. Dimensional Alternatives include room width and length, window height (W.H) and window sill height (S.H). 
 
Table 2. Selected parameters and their values in both datasets for model training and validation process. 

  Variables in training dataset Number of 
alternatives 

Variables in validation dataset Number of 
alternatives 

Fi
xe

d 
Pa

ra
m

et
er

s 

Location Tehran - Tehran - 
Occupation Office  

(Occupancy Time: 
 7:30A.M. – 17:30 P.M) 

- Office  
(Occupancy Time: 
 7:30A.M. – 17:30 P.M) 

- 

Window glass type Single pane glass with 0.85 visual 
transmittance 

- Single pane glass with 0.85 visual 
transmittance 

- 

Space height(m) 3.5 - 3.5 - 

Va
ri

ab
le

s 

Window orientation N,E,S,W 4 S,E 2 
Space Dimensions (x,y) (m) (3,4)-(6,7)-(8,10) 3 (7,8)-(5,6) 2 
interior surfaces reflectance 
factor 

0.2 - 0.4 – 0.7 3 0.3-0.6 2 

Shading state No shading – 15cm horizontal 
louvre 

2 No shading – 15cm horizontal 
louvre 

2 

Window Sill Height (m) 0.5 – 0.7 – 0.9 – 1.1 4 0.8 - 1 2 
Window height (m) 1.2 – 1.5 – 1.8 – 2.1 – 2.4 5 1.6 – 2.0 2 
window divisions 1 window as wide as the room’s 

width- 
3 windows with equal distances 

2 1 window as wide as the rooms 
width 

1 

  Overall alternatives 2880 Overall alternatives 64 
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ANN algorithm conducts basically non-linear function 
approximations and performs numerical predictions via 
supervised, unsupervised, and reinforcement learning techniques 
[31]. The main concept behind ANN is the biological structure of 
neural networks that make up the brain and nervous system. This 
algorithm is composed of several layers, each contains several 
processing units, called neurons. The input layer receives the input 
data; the hidden layers perform the computations, and the output 
layer predicts the results [32]. Inputs are multiplied by 
corresponding weights, and the sum is then biased to minimize 
errors that stem from the difference between the actual and 
predicted outputs [10]. The value passes through an activation 
function, acting as a gate that allows the transmittance of the value 
to the next layer [33]. There are key parameters that tune ANN; 
including the number of hidden layers and hidden neurons, 
learning rate, number of epochs, batch size, and activation 

functions. These parameters are selected and tuned through a trial 
and error process and differs from one dataset to another. 

The hyper-parameters of the ANN, optimized for this research, 
are presented in Table 5. The algorithm architecture has a single 
hidden layer with 40 neurons (Fig. 4). This architecture had the 
best performance among all alternatives. At each step, the hyper-
parameters of the algorithm were adjusted and the results were 
observed. After defining the hidden layer properties, epoch and 
batch sizes were adjusted. The influence of the changes in these 
two latter parameters is not of vital significance. So that, a simple 
and fast responding value was finally chosen for them. 

To avoid weighing one orientation against another, the window 
orientation variable is represented by four Boolean values 
displayed as numbers of 0 or 1, each corresponding to one cardinal 
direction. For instance, [1,0,0,0] refers to north orientation, in 
which the four digits stand for north, east, south, and west, 
respectively. 

Table 3. The selected metrics to be analysed in the spaces of this research. 
Discipline Selected metrics Definition 

Daylight Mean Daylight Autonomy (mDA) [25] the percentage of time that daylight levels are above a specified target illuminance within a physical 
space or building. The average amounts of DA for the spaces are regarded as mDA or mean 
daylight autonomy. 

Saptial Daylight Autonomy(sDA) [25] reports how much of a space receives more than 300 Lux of daylight for more than 50% of 
occupancy time.  

Useful Daylight illuminance (UDI) [26] corresponds to the percentage of the occupied time when a target range of illuminances at a point in 
a space is met by daylight. In the present research the targets are set from 300 to 3000 lux. 

Glare Annual Sunlit Exposure (ASE) [25] reports how much space receives excessive direct sunlight causing glare discomfortASE1000/250h 
calculates the percentage of nodes exceeding 1000 Lux for more than 250 hours annually. 

Spatial Visual Discomfort (sVD) [27] SVDDGP >= 0.45-20%. DPG higher than 0.45 in more than 20% of the occupation time is considered 
uncomfortable. 
 

Quality Views Quality Views based on LEED v.4 [23] Based on 4 calculations: 
Outdoor view content 
View factor 
View Depth 
View Range 

 

 
Fig. 3. Grasshopper code for daylight, glare and quality views calculations schematic overview. 
 
Table 4. Daysim parameters adjustment. 

Radiance Parameters Value 

Ambient bounces 5 
Ambient divisions 1500 
Ambient super samples 128 (default) 
Ambient resolution 16 (default) 
Ambient accuracy 0.25 (default) 
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To measure the accuracy of different algorithm architectures, 
two error metrics were adapted: MSE and MAE. These two 
metrics were applied both in the MLA’s optimization process and 
in the validation process of the predicted results. 

MAE defines the average absolute difference between predicted 
and simulated values in the dataset, while MSE is the average 
squared difference between the estimated values and the actual 
value. MAE fails to punish large errors in prediction, while MSE 
indicates large errors more obviously [34]. 

MAE = ∑|yi−y�i|
n

     (1) 

MSE =  ∑(yi−y�i)2

n
     (2) 

 
2.4. Sensitivity Analysis with Shapley additive explanations 
Since the ANN-based model is categorized as a black-box model, 
the exact function and formula calculating the metrics in the 
predictive models is not apparent [10]. So that, there is no 
confidence about whether the relationship among the values in the 
current study is linear or not. Accordingly, a new method named 
Shapley Additive Explanations is applied for the sensitivity 
analysis, which does not necessarily adopt linear functions for the 
analyzes [22,35]. In Shapley Additive Explanations, the algorithm 

performance is evaluated in two different conditions, with and 
without the target variable’s presence. Then each feature’s effect 
on the prediction process would be observed by a value named 
SHAP Value [22]. 
 
3. Results 
The boxplots showing the distributions of simulated metrics are 
presented in Fig. 5. According to the results, in most of the 
reviewed spaces, view depth and view factor metrics are above the 
minimum acceptable range in LEED v.4 (>75%), which is 
adequate to get the quality views credit [23]. 

The simulated daylight sufficiency metrics are distributed in a 
wide range of less than 10% to 100%. For most cases, the mDA 
and sDA values are above 50%. In accordance with the LEED v4. 
[23], the office spaces with the sDA of more than 55% and 75% 
would receive 2 or 3 credits, respectively. So that, most of the 
simulated spaces perform well in terms of daylight access/ 
availability. On the other hand, the UDI-autonomous values show 
that a high percentage of the received daylight, fall above the range 
of 300-3000 lux. The significantly high values of the sVD and 
ASE in most cases, support the claim of spaces facing a high risk 
of glare. As can be seen in Fig. 5, the median of ASE values is 

Table 5. Hyper parameters of the best performing ANN algorithm. 
ANN hyper parameters values 

Train/ test data numbers 2304/576 (80% to 20%) 
Number of layers 1 
Number of neurons 40 
Epoch 50 
Batch size 10 

 

 
Fig. 4. Applied artificial neural network architecture. 
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65.03% which is much higher than the ASE 10% threshold criteria 
in LEED v.4. 
 
3.1. The artificial neural networks training and optimization 
process 
While a full daylight and glare simulation might take over 30 
minutes per variant, depending on the size and complexity of the 
design, the duration of the introduced ANN-based predictive 
model for all 64 variants is in the order of seconds. All training 
and prediction time measurements were performed on an Intel 
Core i7 machine, with 16 GB of RAM. Tables 6 and 7 present a 
summary of model training properties. The optimization process 
of the algorithm included selecting varied hyper-parameters and 
analyzing the results, using both MAE and MSE accuracy 
measures. In the first step, the number of layers and hidden 
neurons were fixed (Table 6). In the second step, the impact of 
epochs and batch size values on the model outputs were analyzed. 

As can be seen in Table 7, the error values were not affected much 
but the training times were significantly influenced. Refinement 
of hyper-parameters may reduce the training time; however, it is 
not of vital importance in the evaluation of the predictive model. 
That is mainly because the training process happens only once and 
after that the model is able to predict the metrics in the order of 
seconds. 
 
3.2. The neural networks validation results 
To assess the efficiency of the MLA-based method, a comparison 
was made between the results of the ANN predictive model and 
CBDM simulations, using 64 alternatives as a validation dataset. 
As illustrated in Fig. 6, the predicted values obtained from the two 
methods are close, for nearly all eight metrics. Table 8, shows the 
results for MAE and MSE of the ANN model. The findings 
indicated that on average, the model performs better in the 
prediction of daylight sufficiency metrics than the others with an 

 
Fig. 5. The simulated metrics values distribution in the dataset. 
 
Table 6. Hyper parameters of the best performing ANN algorithm. 

No. Number of hidden 
layers 

Hidden layer’s neurons epoch Batch size MAE MSE 

1 2 20 200 10 0.14 0.11 
2 2 20 100 10 0.06 0.01 
3 2 15 200 10 0.13 0.08 
4 2 15 100 10 0.13 0.08 
5 2 10 200 10 0.08 0.02 
6 2 10 100 10 0.07 0.02 
7 1 40 200 10 0.03 0.002 
8 1 40 100 10 0.03 0.002 
9 1 30 200 10 0.03 0.002 
10 1 30 100 10 0.03 0.002 
11 1 15 200 10 0.08 0.02 
12 1 15 100 10 0.08 0.02 

 
Table 7. The second step of trial and error process of the ANN algorithm optimization. 

Better 
performing 
models 

Number of 
hidden 
layers 

Hidden 
layer’s 
neurons 

Previous 
epochs 

Previous 
Batch size 

New epochs New batch 
size 

MAE MSE Training time 
(s) 

7 1 40 100-200 10 50 10 0.03 0.002 7.47 
8 5 0.03 0.002 14.34 

100 5 0.03 0.002 28.73 
9 1 30 100-200 10 50 10 0.04 0.003 6.98 
10 5 0.04 0.003 13.86 

100 5 0.04 0.003 28.83 
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overall accuracy of 91.7%. The prediction error is highest with 
sDA among daylight sufficiency metrics, while mDA resulted in 
the least MAE and MSE values. The average MAE in the 
prediction of daylight metrics is 0.027. This value is 0.039 for 
glare metrics and 0.036 for quality views. Still, all errors are within 
the acceptable range where MAE falls between 1.8% and 6% and 
MSE is 0.007. On the whole, the model’s accuracy is satisfying 
considering the fact that there would be no need for time-
consuming simulations, and the overall performance of the space 
in daylight, glare, and quality views would be available in a short 
time. 

The actual error values in the prediction of the new 64 shoebox 
spaces are presented in Fig. 7. The absolute values of errors in 
daylight metrics vary from 0.02 to 0.13. The errors in sVD and 
ASE are more varied ranging from 0.01 to 0.18; and finally, the 
errors in quality views vary from 0 to 0.12. View range got the 
lowest accuracy in prediction, with the highest MAE value in 
comparison to the other factors, varying from 0.01 to 0.13 in the 
actual values of the metric. According to the results, daylight 

sufficiency and glare metrics have similar performance with the 
same MAE and MSE values; but actual errors on each alternative 
hardly exceeded 10%. 

Considering the average error values, the model performs well 
with a high degree of precision. However, the actual error for each 
variable might be problematic, since the bias might cause the 
predicted metric value to fall below/above certain thresholds 
defined by standards and building certifications. For instance, an 
actual error value of 0.10 in each of the quality views metrics will 
directly change a space’s verification in accordance with LEED 
v.4. A wider range of variables in datasets of future work can 
improve not only the overall accuracy of the predictive models but 
also the actual accuracy of each alternative. 
 
3.3. Sensitivity analysis 
The SHAP value was utilized to identify the contribution of each 
variable to the calculated metrics. This analysis can reveal the 
main effective variables/ inputs, which can be explored in more 
detail in future studies. The graph in Fig. 8 indicates the SHAP 

Table 8. Metrics prediction overall error values. 
 MAE MSE 

Daylight UDI 0.022 0.0008 
mDA 0.019 0.0006 
sDA 0.042 0.003 

Glare sVD 0.047 0.003 
ASE 0.031 0.003 

Quality Views View Range 0.06 0.007 
View Depth 0.018 0.0017 
View Factor 0.03 0.0015 

 

 
Fig. 6. Simulated vs. predicted values of the metrics. 
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value analysis for input variables. The color of each point 
represents the impact of that variable on the resulted metrics. 
According to the graph, the parameters related to the size of the 
windows, e.g. window height, room dimensions, and the number 
of windows are the most effective inputs to explain the variability 
of calculated daylight and glare metrics. 

Besides, each input feature may have a positive or negative 
effect on the output targets. Figure 8 visualizes this influence with 
a gradient of red and blue. The SHAP values for daylight and glare 
metrics are mostly above 0.1 with an almost balanced distribution 
of impacts for each input feature. On the other hand, some input 
features of view analyses have nearly no effect on the targets, with 
SHAP value of less than 0.01 on average. 

According to the overall results of the sensitivity analysis, as 
shown in Fig. 9, the parameters affecting the window to wall ratio 
and room dimensions are the top three most influential parameters. 
The effect of these parameters is three times higher than those 
related to shading state or window sill height. It shall be noted that 
these results are only applicable to the present dataset and 
analyzed space and cannot be generalized to other space types and 
alternatives without further investigation. 
 
4. Discussion 
This paper examines the suitability of ML algorithms for 
application in daylight and visual comfort assessments. In line 
with the findings reported in the literature [10], the high accuracy 
of the predictive model created in the current research shows the 
feasibility of using ML-based methods for the prediction of 
daylight and glare. The first research objective was to provide a 

comprehensive analysis by covering essential metrics. Findings 
showed that the obtained model could be applied for the evaluation 
of all mentioned aspects with an accuracy of 94% to 98.2% on 
average. The created model in this research, provides more varied 
metrics compared to previous studies, while the error measures 
and loss functions show almost the same quality and accuracy 
(Table 9). 

Considering the second research objective, view quality of the 
spaces has been included in the framework along with daylight and 
glare assessment, to generate a more holistic framework. It should 
be noted that most recent studies focused on the prediction of 
daylight or glare metrics (Table 9) and window view has been 
rarely discussed in the literature. The results of this research 
contribute to 94% to 97% of accuracy in view analyses on average. 

In previous studies, internal design parameters (e.g. interior 
surfaces properties, WWR, room length and width)  were used 
more frequently compared to external ones(e.g. exterior 
obstruction height and angles, distance from obstructions, solar 
hour) [10], meaning that in the designers’ opinion interior features 
are considered to have more effect on the space’s performance. 
Based on this clue, the selection of the input features was mainly 
based on the interior design options of the studied room. Although 
the feature selections may have limited the comprehensiveness of 
the inputs the user can manage, the options still have sufficient 
variation for an early decision-making process. 

The method of this research was to solve a regression type 
problem to predict the output targets of the ANN-based model. 
According to the literature review, 87% of the ML-based daylight 
studies were regression problems [10]. Some of the metrics like 
UDI and DGP (which is regarded in form of sVD in this paper) 

 
Fig. 7. Actual errors in the metrics predictions by the ANN in validation dataset. 
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can be also analyzed via a classification method, as they are 
defined with a qualitative scoring system as well [26,36]. This can 
be a target for future researches in this field. 

Temporal granularities are another effective factor in the 
analyses. Both hourly analyses and specific time-steps have been 
calculated with MLAs in pervious studies [10]. It is of vital 

 
Fig. 8. Sensitivity analysis of the metrics to different variables using SHAP value. 
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importance to develop the ML models for practical 
implementation that could assist architects. That would prioritize 
the annual hourly basis for the calculations rather than selected 
instances of time. This issue also applies to dynamic and static 
illuminance metrics as well. Dynamic metrics have been selected 
to make the analyses applicable to annual performances. sVD 
metric in glare predictions has also been applied instead of the 
static DGP for this reason. This is one of the aspects of the present 
research which makes it practically applicable for early design 
stage analyses. 

The hyper-parameters that were tuned for the MLA are number 
of Hidden Neurons and Hidden Layers, Epochs, Activation 
Function, and Learning Rate. These parameters are mainly 
balanced based on a trial and error procedure. Two purposes are 
required to be fulfilled when tuning these parameters: Model 
Calculation Speed and Prediction Accuracy. Since the speed of 
predictions is far better than the former CBDM techniques, the 
accuracy becomes the main purpose which is further evaluated by 
loss functions, MAE and MSE, at each step of optimizing the 
model. This step is also based on a common method which is 
applied by other researches of this field repeatedly [37]. 

The hyper-parameters tuning process went through two main 
steps. First, the number of hidden layers and neurons were 

adjusted to examine their influence on the model’s prediction 
accuracy. Although increasing the number of hidden layers and 
neurons seems to improve the model’s performance, it was found 
that one or two hidden layers performed better in comparison with 
deeper networks. Increasing the number of neurons up to 40, 
improved the model’s performance. Thereafter the model started 
to plateau, as more complex networks require more data to process; 
otherwise, the predictive model overfits the data, and the loss 
function increases in value. 

Epochs and batch sizes were adjusted in the next step of 
algorithm optimization. Although the loss functions were 
approximately not affected by decreasing the epochs down to 50 
and the batch sizes down to 5, the training time was highly 
influenced. By comparing the overall results of the MAE and MSE 
in the model’s prediction accuracy, the best-performing model 
was selected for further application in the target framework. 

To make accurate predictions using MLA, training relevant data 
is required to construct mathematically-fit models; but they are 
only applicable in the data range from which they were emerged 
[10]. For this reason, sensitivity analysis can be useful to develop 
the input and output features in a practical form. In contrast with 
similar researches, thanks to the newly introduced method of 
Shapley Additive Explanations, sensitivity analysis has been 

 
Fig. 9. Overall Sensitivity analysis of the metrics to different variables using SHAP value. 
 
Table 9. Comparison of the results and methodology in recent studies. 

Author(s) Building type Selected 
algorithm 

Output Parameter Data size Evaluation Metrics 

[6] Residential MLR sDA, ASE 1296  for training 5.28-8.13% (RMSE) 
0.87-0.98% (R2) 

[16] Office ANN DF, DA, DGP 2963 for training  
200 for testing 

0.20-0.80% (MSE) 

[20] -Not Specified- ANN DA 2057 for training  
685 for testing 

0.51-0.55%(MAE) 
0.63-0.65% (RMSE) 
0.06-0.09% (MBE) 

[17] -Not Specified- ANN/SVM Illuminance values 3879 for training and 
500 for testing 

0.22-0.47% (MSE) 
0.91-0.95% (R2) 

[18] Laboratory ANN Illuminance values 64786 for training 11432 
for testing 

39.20-69.60% (RER) 
 

[21] Educational ANN DGP, CGI 59 for training  
31 for testing 

5.28-8.13% (RMSE) 
0.87-0.98 (R2) 

Current 
Research 

Office ANN sDA, UDI, mDA 
ASE, sVD 
Quality views based on LEED v4 

2300 for training 
580 for testing 

1.8 to 6% (MAE) 
0.06-0.3%(MSE) 

 

http://creativecommons.org/licenses/by/4.0/


281 H. Nourkojouri et al. / Journal of Daylighting 8 (2021) 270–283 

2383-8701/© 2021 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

conducted for every single data of the dataset individually. This 
would clarify the effects of the inputs on the targets and forms the 
future developments of the framework by adapting more 
influential parameters on each of the metrics involved in the 
analyses. 

As indicated in Figs. 8 and 9, the impact of each variable on the 
output metric is different. The results of sensitivity analysis shall 
be studied along with the metrics’ description. For instance, view 
metrics are highly influenced by the number of windows and 
window orientation in the analyzed dataset. View factor, view 
range, and view depth are calculated based on the physical 
dimensions of the spaces and their windows. By changing the 
window orientation, the glazed wall would also be changed and 
consequently, the width of the opening was impacted. Thus, the 
effect of window size is also shown in the results of sensitivity 
analysis and it is observed that view metrics were more influenced 
by west and east orientations compared to south and north ones. 
Accordingly, while applying the results of sensitivity analyses to 
the spatial parameters, their embedded calculation procedures 
shall be considered beforehand. 

One of the main challenges of using MLAs in constructing a 
holistic predictive model is the tediousness of creating a separate 
optimal algorithm for every building performance metric. That is 
why usually a small number of outputs are investigated in a single 
research item. But in this paper, a single predictive algorithm was 
generated for all the output targets including eight different 
metrics. Any number of input parameters can be used in Machine 
learning models; more inputs can offer more accuracy, but at the 
expense of more complexity. In fact, more complexity of the 
model may lead to overfitting of predictive algorithm. In contrast, 
fewer inputs, might yield less accuracy. So, it is a challenge to 
achieve an acceptable range of accuracy while keeping the amount 
of data at a logical value. Concerning previous studies, a set of 
around 3000 data was assumed to be sufficient in number and 

variance. The input features were then distributed to cover the 
regarded number and at the same time prevent any interpretability. 

Overall, three main issues affect the concept of MLAs 
application in the prediction of building performance and are 
addressed in researches like the present one. They include the 
model architecture, Input and Output Features, and Sensitivity 
Analysis. Each of these issues has been the primary purpose of 
recent studies individually, but in this paper, they have all been 
covered together to propose a comprehensive study in this field. 

In order to define practical applications of the research results 
in a form of a comprehensive toolkit, a graphical user interface is 
required to be added to the calculation python code. Figure 10 
shows a recommended format for this interface. The obtained 
ANN predictions can be also fed back to Grasshopper or Dynamo 
models as a plugin component to perform the analyses along with 
the design process. 

As it is indicated in the proposed interface, some physical 
features of the space are directly entered by the user; while others 
are available as options that would be translated into the ANN 
model input features e.g., Interior surfaces finishing. Besides, the 
view content factor is entered manually, to be considered along 
with other three calculated metrics including view range, view 
depth, and view factor. 

Since all users may not have sufficient expertise for interpreting 
the outputs, the intended results of the framework include some 
explanations about each calculated metric. Moreover, a 
comparison between the metrics’ values and their acceptable range 
would be available based on LEED v4 [23] and the 19th topic of 
National Building Regulations of Iran. Three levels of efficiency 
have been declared for daylight quality of spaces in the latter 
source and the obtained model can classify the designed space 
based on the defined principles [24]. 

The predictive model and the derived frameworks are 
essentially required for building industries’ stakeholders in 

 
Fig. 10. Featured framework for the analysis of the spaces in early design stages, including user interfaces. 
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developing countries like Iran to improve the coordination among 
architects and members from different disciplines. The proposed 
tool in this research, will be formed on the basis of national and 
international regulations in daylight and visual comfort metrics to 
address these shortcomings in the building industry. 

However, to provide more precise and trustworthy information, 
it seems considerable to indicate the limitations present in the 
study, together with recommendations for future researches. 
• The nature of the train and test dataset: The main limitation 

relates the nature of the dataset creation process. Designing 
for daylighting performance is a complicated task that is 
mainly based on simulation-derived analyses. Although the 
application of simulation-based procedures allows the 
manipulation of different elements (e.g., WWR) and enables 
the developed models to be trained on a wide range of 
influential factors, obtaining daylighting data from real 
buildings would provide more accurate findings. Therefore, it 
is suggested that future studies develop indoor illuminance 
predictive models based on real field data from multiple 
buildings with different design configurations. 

• A finite set of design variants: The investigated dataset in this 
study was derived from 2880 simulations which took about 
twenty days to be completed. However, the dataset still does 
not comprise a sufficient amount of interior and exterior 
parameters. This limited number of features prevents the 
framework from supporting varied design scenarios. It is 
recommended that in future researches, the ML-based model 
be trained with a more holistic dataset that contributes to 
different environmental features like neighborhood buildings, 
more shading devices details, and other climate regions data. 
All results, including the correlation levels and the model 
structure, are therefore dictated by the reference dataset and 
underlying assumptions. 

• The geometry and size of spaces: the current study considered 
daylight performance in a square space of a special size, 
which is not necessarily a general representation of many built 
working spaces despite being utilized in previous daylight 
studies. Future studies should attempt to establish a prototype 
model that can be used for daylight studies in the scale of the 
whole building rather than single spaces. 

Automation of the transfer of ANN results to existing interfaces 
for visualization and feedback can facilitate design exploration 
and user interaction with the results. Future works can focus on 
the development of a plug-in to the architectural softwares (like 
Grasshopper or Dynamo) in order to automate model 
parameterization, ANN training feature extraction, ANN training 
and validation, and ANN optimization. 
 
5. Conclusion 
An ANN-based predictive model has been developed in this 
research which can be utilized in holistic daylight and visual 
comfort design evaluations. Daylight and visual comfort metrics 
have been analyzed in a single shoebox space. The results 
indicated that all three fields’ metrics could be predicted by this 
method with acceptable accuracy. This procedure could form a 
framework capable to replace the present simulation-based 
methods. Thus, the calculation of the metrics would be available 
without the requirement of time-consuming computer-based 

simulations. The suitability of this approach, however, is 
dependent on a cost‐benefit analysis regarding the ratio between 
the needed input training data and the required number of 
predictions. Since generating the training data continues to depend 
on conducting full computer simulations or real-world 
measurements, such a method is, therefore, more practical when a 
full parametric analysis of all combinations of design variables is 
available. Considering changeable weighting factors for each 
aspect, the design ideas can be evaluated based on the designer’s 
intended priorities and in accordance with the space type. The 
results of this paper have the potential of forming a tool that could 
be used in early design stage analyses without the requirement of 
time-consuming simulations in previously developed platforms 
and programs. 
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